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Abstract. Ubiquitous computing to estimate the location of objects in a building raises a 

fundamental challenge and there has been a lot of research on localization in buildings based on 

signal strength by utilizing devices inside such as Wi-Fi signals. Positioning objects using 

algorithms of received signal strength in this paper using Linear Support Vector Machine which 

will be compared with Naïve Bayes. Experiments carried out using 14480 datasets and 302 

classes were collected from the real world environment and the results showed that the system 

reached the correct classification level of around 88% and a minimum distance of error of 4.61 

meters compared to Naïve Bayes for the correct classification level of around 67 % and average 

error distance of 6.21 meters. 

1.  Introduction 

The accurate localization of objects and people in indoor environments has long been considered an 

important building block for ubiquitous computing applications[1,2]. Most research on indoor 

localization systems has been based on the use of short-range signals, such as Wi-Fi [3–5], Bluetooth 

[6], ultra sound [7], or infrared [8]. GPS (Global Positioning System) very appropriate used in detecting 

outdoor locations, but less suitable if used in space, because weak or even absence of satellite signals. 

Because of that, it is necessary to have a stable and accurate system in detecting the location of objects 

in space, which can be used at home, in the office or in the building others.  

This paper shows that contrary to popular belief an indoor localization system based on Wi-Fi 

fingerprints. With the growth of  networks based IEEE 802.11,and increasing variety devices such as 

laptops, cell phones, and equipment others are WLAN-based, internal location detection space using 

IEEE 802.11 based technology will growing. Received Signal Strength (RSS) is power radio signal 

received by the receiver sent by transmitter. In general, RSS will decrease proportional to the distance 

between the receiver and transmitter [9]. If the relationship between receiver-transmitter distance and 

signal strength is known, both empirically and analytically, the distance between two devices can be 

known. There are several advantages to using RSS for indoor localization. First, it can be implemented 

in a wireless communication system with little even without adding or changing hardware, all that is 

needed is the ability to obtain and read RSS. Second advantage is no need for synchronization between 
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transmitters and receiver [10]. One important characteristic of RSS is Different orientations provide RSS 

values different [11]. Different RSS is caused by multipath and also different attenuation. 

Support Vector Machine is one method used in classification. SVM is a learning machine method 

that works on the principle of Structural Risk Minimization (SRM) with the aim of finding the best 

hyperplane that separates two classes in input space. Support Vector Machines are powerful techniques 

used for classification and data regression [12,13]. They are used for non-parametric supervised 

classifier for pattern recognition problem. 

2.  Methods 

2.1.  RSS based localization 

Predicting a wireless device’s physical location in an indoor environment has been accomplished using 

techniques based on received signal strength (RSS) [3–5,14-17] angle of arrival (AoA) [18,19] time of 

arrival (ToA) [20] and time difference of arrival (TDoA) [7]. In this paper, we consider only localization 

techniques that are based on RSS, as these can be constructed with commodity 802.11 hardware and 

stock drivers. 

RSS-based localization refers to the task of estimating an 802.11 device’s physical location using 

only signal strength information. Due to the inherently noise nature of the RSS measurement, RDD-

based localization algorithms typically apply statistical/machine learning techniques, and proceed in two 

phases: 
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2.2.  Naïve Bayes classifier 

Localization techniques that use the Naïve Bayes classifier have been proposed in [33-36]. This 

approach is based on the application of Bayes theorem to obtain a position estimate. Using Bayes 

theorem, the conditional probability of observing a signal strength vector from the training data at a 

particular position is computed. During the localization phase, the position estimate is the position that 

maximizes this probability for the observed signal strength that maximizes this probability for the 

observed signal strength vector. 

Naïve Bayes classifier is a simple probabilistic based on the Bayes theorem in general, Bayes 

inference specifically with strong (naive) independence assumptions. In the process, Naïve Bayes 

assumes that the presence or absence of a feature in a class is not related to the presence or absence of 

other features in the same class. 

Generally the attribute E  group is represented by a set of attribute values  
n

APAPAP ....,
2

,
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RSS is the  AP attribute value. L  is the classification variable in this case, that is the coordinates and l 

are the values of L . From the point of view of opportunities based on the rules of Bayes into class l  are: 
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Because the value is constant for all classes, it can be ignored so as to produce a function: 
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To overcome various problems, various variants of classifications that use Bayes theorem are 

proposed, one of which is Naïve Bayes: 
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The approach, called Naïve Bayes, involves modelling signal strength as a Gaussian distribution and 

using the strength of the signals collected to study Gaussian distribution parameters, which are the mean 

and standard deviations of training data. As well as calculating the Euclidean distance vector S  

observation signal at position l .
i

S  is the signal strength observed from AP  at position l , l
i

M  is the 

average signal strength of AP at position l calculated from fingerprint data, l
i

D is the standard deviation 

of AP in position l calculated from fingerprint data and ||P  is the number of AP that reads in position 

l . When the strength of the vector S  signal is obtained from the measurement of the current time of the 

signal strength in the field, the probability  lSP |  is calculated for all positions in the field where the 

signal strength has been measured during the signal strength database. Position l  which has the highest 

probability  lSP |  for a signal strength vector is classified as the user's position in the field at this time. 
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2.3.  Support Vector Machines (SVMs) 

Support Vector Machines are powerful techniques used for classification and data regression [12,13]. 

They are used for non-parametric supervised classifier for pattern recognition problems. SVMs are used 

in the localization system by training the support vectors on radio map that consist of grid points. SVMs 

analyse the relationship between the trained fingerprints and their grid points by considering each grid 

points as a class. The tested RSSI fingerprints are taken as an input to SVM that predict the class to 

which the tested belongs. This technique can be generalized to classify between more than two classes 

for N  training data ),(
i

y
i

x . 

Before any classification, the RSSI fingerprint vectors are mapped into higher dimensional space 

using kernel function. The SVM kernel function ..)..,(K is the dot product of two feature vectors 
i

x and 

j
x in some expanded feature space, there are several kernels are proposed by researchers. The four 
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basics kernels as follow: linear, polynomial, sigmoid and radial basis function (RBF). In this research, 

linear is used in the following form  

j
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Where 2 is the variance (i.e. width) of the Gaussian kernel. 

After representing the training data by mapping the data to the feature space. The SVM algorithms 

identify hyperplane, which separates the support vector trained with a distance equal
w

2 . It is 

constructed in such a way that they can be divided in two data classes with a maximum distance to the 

closest vector from the same class. The optimization problem is shown in: 
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the minimize (9) based on lagrangian function, where 
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 is the lagrangian multipliers. The constrained 

optimization problem can be expressed in a dual form by searching a solution under the form [38]. 
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Maximizing with respect to  : 
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There is a pure decision and uncertainty is inefficient. A pure decision means each node’s data subset 

contains one and only one target location. 

3.  Results and discussion 

The research material used indoor localization based Wi-Fi using Support Vector Machine method is 

the result of the measurement of signal strength received by laptop for IEEE 802.11g. The experiment 

was carried out in the corridor of the 3rd floor of the building with an area of ± 302 m2. Determination 

of reference points is the next stage in space planning which is the scope of research. At this stage the 

corridor is measured and then divided into areas with an area of 1 m2. Before taking data training, the 

reference points that are right in the middle of each area are marked first and it is certain that the mark 
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is in accordance with the coordinates that will be used as classifications in data fingerprint, this is done 

to facilitate the process of measuring data training. 
 

 

Figure 1. Reference points of 1 m2. 

This research is divided into several stages. These stages are: 

 

 Space Planning is the first step in making a signal strength map in that space become the scope 

of research. The research room is floor hall 1, 2, and 3 a building. At this stage the aisle is 

measured then divided into cells with a width of 1 meter each cell. 

 Measurement of RSS. In this process RSS measurements are received by the Laptop, at each 

cell that has been measured. Measurement done in the same direction i.e. west. Measurement 

RSS is done when the building conditions are quiet, that is on Saturdays and Sundays or 

holidays. Software the one used is Net Surveyor. 

 

Figure 2. Netsurveyor view. 

 RSS visualization. RSS visualization is used for provide a map of the signal strength received 

(RSS). RSS value on each grid point is obtained by calculating the average the signal received 

on the grid point. Visualization is done using software RapidMiner. Visualization using the AP 

installed on the 3rd floor of the building. 
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Figure 3. RSS visualization for AP1. 

 Data Validation. Dividing the dataset for validation and for training, need to know whether the 

model to be made is the best model. Then finally use the statistical method to estimate the 

accuracy of the model against previously unknown data. 

 

Figure 4. Data validation using RapidMiner. 

 Location Fingerprinting. Fingerprinting is method for measurable data mapping, namely RSS 

to in a grid-point that covers the entire localization area which will be used for location 

estimation. RSS not all of the AP in the building environment used, but RSS is chosen from 

several APs has a significant influence on location estimation. RSS data processing is done 

using Excel software. 

 Algorithm modelling. This process is carried out algorithm modelling used is Naïve Bayes and 

Support Vector Machine. In the process this modelling can be known the percentage accuracy. 
 

 

Figure 5. Algorithm modelling. 
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 Location Tests and Estimates. Testing is an important process for knowing results from a 

system. Test data obtained by how to do RSS measurements received laptop by walking along 

the 1st floor hallway, 2 and buildings. Estimated location of objects in this case is an IEEE 

802.11 based laptop, obtained from a comparison between RSS measurements in fact, the test 

data with previous measurements that have been stored in fingerprint. Location estimation using 

algorithm which has been modelled before. Estimated error location is obtained by calculating 

distance between the actual location and the estimated location. 

 

Figure 6. Data collection testing. 

 Analysis of results. At this stage an analysis is carried out for knowing the magnitude of the 

estimated error on algorithm used. 

 

Results of research in figure 7 shows the Class for indoor collection testing data for localization based 

Wi-Fi___33 signal using a support vector linear machine. Data testing was collected in the number of 

10 to 50 data taken by walking along the hallway area in the building. 

 

Figure 7. Class of testing data. 

Table 1 shows the results of the minimum distance error by comparing the differences in the methods 

used namely Naïve Bayes and Linear SVM with C = 1, 2 and 5. 

Table 1. Comparison of the minimum average distance with Naive Bayes and Linear SVM methods. 

Algorithm Error (m) 

Naïve Bayes 6,21 

Linear SVM (C=5) 5,884873 

Linear SVM (C=1) 4,612462 

Linear SVM (C=2) 4,612462 
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4.  Conclusions 

The SVM Linear method is better in the results of the minimum average error distance compared to 

Naïve Bayes. Linear SVM with C = 1, 2 and 5 shows that C = 1 and 2 get a fixed result but when C = 5 

shows the change in the results of the minimum average error distance is not good compared to C = 1 

and 2. 
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