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Abstract

A new four-dimensional hyperchaotic system with three quadratic nonlingarities is

proposed in this paper. The dynamical properties of the new hyperchactic system are explored
in terms of phase portraits, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, etc.
Also, a detailed dynamical analysis of the new hyperchaotic system has been carried cut with
bifurcation diagram and Lyapunov expenents. As an engineering application, an electronic
circuit realization of the new hyperchaotic system is designed via MultiSIM to confirm the
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Abstract. A new four-dimensional hyperchaotic system with three quadratic nonlinearities is proposed in this
paper. The dynamical properties of the new hyperchaotic system are explored in terms of phase portraits,
Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, etc. Also, a detailed dynamical analysis of the new
hyperchaotic system has been carried out with bifurcation diagram and Lyapunov exponents. As an engineering
application, an electronic circuit realization of the new hyperchaotic system is designed via MultiSIM to confirm
the feasibility of the theoretical hyperchaotic model.

1. Introduction

Chaotic systems are nonlinear dynamical systems that are highly sensitive to initial conditions [1-2].
Chaotic systems that arise in modelling have many applications in science and engineering such as
weather systems [3], ecology [4], neurons [5], biology [6], cellular neural networks [7], chemical
reactors [8], oscillators [9], robotics [10], encryption [11-12], finance systems [13], circuits [14-15],
secure communication [16], etc.

A hyperchaotic system is a chaotic system having two or more positive Lyapunov exponents [1-2]. The
first hyperchaotic system was reported by Rdssler [17]. Other famous hyperchaotic systems are
hyperchaotic Lorenz system [18], hyperchaotic Chen system [19], hyperchaotic Li system [20],
hyperchaotic Rabinovich system [21], hyperchaotic Vaidyanathan systems [22], etc.

In this research paper, we report the finding of a new hyperchaotic system with three quadratic
nonlinearities. We describe the phase plots of the new hyperchaotic system and do a rigorous dynamic
analysis by finding equilibrium points and their stability, bifurcation diagrams, Lyapunov exponents,
etc. Bifurcation analysis is very useful to understand the special properties of chaotic and hyperchaotic
systems [23-26].

Section 2 describes the new hyperchaotic system, its phase plots and Lyapunov exponents. Section 3
describes the dynamic analysis of the new hyperchaotic system. Furthermore, an electronic circuit
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realization of the new chaotic system is presented in detail in Section 4. The circuit experimental results
of the new hyperjerk system in Section 4 agreement with its numerical simulations via MATLAB
obtained in Section 2. Section 5 draws the main conclusions.

2. A new hyperchaotic system with three quadratic nonlinearities

In this work, we report a new 4-D system given by the dynamics
& = a(X — X1) + XoXs

A AR @
| 3 3 12

[)&4 =—d (X +X,)
where X, X,, X5, X, are state variables and a, b, c,d are positive constants.
In this paper, we show that the 4-D system (1) is hyperchaotic for the parameter values

a=30, b=15 c¢=3, d=2 2
For numerical simulations and the calculation of Lyapunov exponents, we take the initial values of the
new system (1) as X (0) = (0.1,0.1,0.1,0.1). Using MATLAB, the Lyapunov exponents of the system
(1) for the parameter values (2) are computed as follows:

LE, =1.3700, LE,=0.1450, LE, =0, LE, =-19.5150 (3)
From the LE spectrum given in (3), it is immediate that the new system (1) is hyperchaotic for the
parameter values (a, b, c,d) = (30,15, 3, 2), since there are two positive Lyapunov exponents in (3).
Since the sum of the Lyapunov exponents in (3) is negative, we also conclude that the 4-D hyperchaotic
system (1) is dissipative. This confirms the existence of a strange hyperchaotic attractor.
The Kaplan-Yorke dimension_of the system (1) is calculated as

D =3+ [ —3.0776, )

“ |LE, |

which gives a measure of the complexity of the new hyperchaotic system (1).
The system (1) is invariant under the change of coordinates given by

(X1 Xas X, Xg) * (Xgy —Xp, Xg, —Xy) ®)
This shows that the system (1) has rotation symmetry about the X, — axis. As a consequence, every non-

trivial trajectory of the 4-D hyperchaotic system (1) must have a twin trajectory.

The equilibrium points of the system (1) are found by solving the system of equations:
[alX2 = X1) + XoXs =0

4 bx —Xx +x =0 (6)

2 13 4
—cx+xx =0
| 3 12

[ -d (Xl + Xz) =0
For solving the nonlinear system (6), we take the parameter values as in (2).
From the last equation in (6), X; = —X,.

Thus, the variable x, can be eliminated and we obtain a nonlinear system of three equations as follows:

—X; (X;+60) =0 (7a)
X, = X, (X3 +15) (7b)
X2 =-3x, (7¢)

We have two cases to consider in solving the nonlinear system (7).

Case (A): x,=0.

In this case, X, =—X, =0. From equations (7a) and (7c), it is clear that x; = x, =0.
Thus, we obtain one equilibrium point of the hyperchaotic system (1) as



o|
4

Case (B): x, #0.
In this case, from (7a), X, =—60. Eq. (7c) gives us x> =180and so X, = ++/180.

E =
0

Since X, = —X, it follows that x, = m~+/180. From Eq. (7c), we find that X, = +£603.7384.

Thus, the hyperchaotic system (1) has two more equilibrium points given by

am |
51:1 _@rf%%d E =: -60 I
| 603.7384 | | -603.7384 |

The Jacobian matrix of the hyperchaotic system (1) at any point Xin
(—a atxs X 0—|

—X b X 1

I(X) = |‘ : ' ‘|
X X - 0
b4 b oo

L ]

We assume that the parameter values are as in the hyperchaotic case (2).
The Jacobian matrix J, = J(E,) has the eigenvalues

A =-3, A,=-30.0443, A,=0.2703, A, =14.7739
This shows that the equilibrium E, is a saddle-point and unstable.
The Jacobian matrix J; = J(E,) has the eigenvalues
A, =0.0254, A, =-19.8140, A,, =0.8943+37.8431i

This shows that the equilibrium E; is a saddle-focus and unstable.

(8)

©)

(10)

(11)

Since J, = J(E,) has the same set of eigenvalues as J,= J (E,), we conclude that the equilibrium E,

is also a saddle-focus and unstable.

Figures 1-4 show the 2-D projections of the new hyperchaotic system (1) in (xl, Xo ) (Xz, X5 ) (X3, X4)

and (X1, X4 ) coordinate planes, respectively.

A 20 10 o 10 20 30

Figure 1. 2-D plot of the new hyperchaotic Figure 2. 2-D plot of the new hyperchaotic

system (1) in the (X1,Xz)plane for

X,=(0.1,0.1,0.1,0.1) and
(@ b,c d) = (30,15,3, 2)

X,=(0.1,0.1,0.1,0.1) and
(ab,c d) = (30,15,3, 2)

system (1) in the (X2,Xs)plane

for
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Figure 3. 2-D plot of the new hyperchaotic Figure 4. 2-D plot of the new hyperchaotic
system (1) in the (Xu,X) plane for
X,=(0.1,0.1,0.1,0.1) and
(ab,c d) = (30,153, 2)

system (1) in the (X3Xs )plane for
X,=(0.1,0.1,0.1,0.1) and
(a,b,c,d) = (30,15, 3, 2)
3. Bifurcation Analysis for the New Hyperchaotic System
In this section, we describe a detailed bifurcation analysis for the new hyperchaotic system (1)
introduced in Section 2. Bifurcation analysis is an important topic for studying chaotic and hyperchaotic
systems. In addition, multistability means the coexistence of two or more attractors with the same

parameter set but with different initial values. Multistability can lead to very complex behaviors in a
dynamical system. Fix a=30, b=15, d=2 and keep C as the control parameter. When ¢ is varied

in the region of [3,13], the coexisting bifurcation model of the state variable of X, and the
corresponding Lyapunov exponents (for better clarity, only the three largest Lyapunov exponents are
presented, and the missing ones have smaller negative values) with the initial state (0.1,0.1,0.1,0.1) are
plotted in Figure 5 (a) and 5(b), respectively, where the blue orbit starts from the initial state
(0.1,0.1,0.1,0.1) and the magenta orbit starts from the initial state (-0.1,-0.1,0.1,-0.1). From Figure

5(a), we can observe several kinds of coexisting attractors with different initial conditions.

Figure 6 exhibits the coexisting hyperchaotic attractors with ¢ = 6.7 and the coexisting hyperchaotic
attractors with ¢=9, (+,0,—,-) where the blue attractor begins with the initial state (0.1,0.1,0.1,0.1)
and the magenta one begins with the initial state (-0.1,-0.1,0.1,-0.1). Specially, it can be seen that the
system starts from a period-1 orbit with the sign of the Lyapunov exponents (0, —, —, —) in the region of
[12.25,13] and then evolves into quasi-periodic orbits with the sign of the Lyapunov exponents
(0,0,—,-) inthe region of [11.4,12.25) and then goes into chaos with the sign of the Lyapunov exponents
in the region of [6.8,11.4) and finally develops hyperchaos with the sign of the Lyapunov exponents
(+,4,0,-)in the region of [3,6.8) with the control parameter ¢ reducing the region of [3,13]. The

corresponding phase portraits are plotted in Figure 7. From the above analysis, we can conclude that the
system indeed displays very complicated dynamics.

4 6 8 10 12 s 3 8 10 12

Figure 5. Bifurcation diagram and Lyapunov exponents of the new
hyperchaotic system (1), where we fix a=30, b=15, d =2



‘(Ia) ! (b)
Figure 6. For the new hyperchaotic system (1): (a) when ¢ = 6.7, coexisting
hyperchaotic attractors, and (b) when ¢ =9, coexisting chaotic attractors
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Figure 7. For the new hyperchaotic system (1): (a) when ¢ =4, hyperchaos, (b) when
¢ =10, chaos, (c) when ¢ =12, quasi-period, and (d) when ¢ =13, period-1 orbits

4. Circuit Implementation of the New Hyperchaotic System

In this section, circuit design and implementation of new hyperchaotic system (1) are presented to
validate the chaotic behaviour of system (1). The circuit construction of system in (1) has further verified
its complex dynamic behaviors by software MultiSIM. Phase potraits obtained using circuit design of
system (1) is shown in Figure 5. the circuit realization equation of of new hyperchaotic system (1) is

§howr1 in (12)I 1

A =—"x ———x + X X

|+ cg 2 CR ' 10CR 23

‘* - 111 X, - 1 i 1 31 (12)
Z_ﬁ 10C R X,X3 + X4

| 24 CR

1 2 5 2 6
b=— 1 x+_ 1 xx

’ C.R,  10C4R,

|>& L X, — 1 X

U7 TCR T CRy

We choose the system parameters as in the hyperchaotic case, viz.

a=30, b=15 ¢=3, d=2
The values of four capacitors in Figure 8 are taken as C; = C, = C; = C, = 3.2 nF. R; = R, = 13.33 kQ,
R3 = R5 =40 kQ, R4: 26.67 kQ, Re =400 kQ, R7 =133.33 kQ, Rg = Rlo =200 kQ, R11 = R12 = R13 = R14
= R15= Rle =100 kQ.
The circuit simulation result by MultiSIM is illustrated in Figure 9.
It is seen from Figure 9 that phase potraits obtained using circuit implementation matches with the results
obtained using MATLAB simulation.



5. Conclusions

A new four-dimensional hyperchaotic system with three quadratic nonlinearities was announced in this
paper. The dynamical properties of the new hyperchaotic system are described in terms of phase
portraits, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, etc. Also, a detailed bifurcation
analysis of the new hyperchaotic system was carried out with bifurcation diagram and Lyapunov
exponents. Multistability and coexisting chaotic as well as hyperchaotic attractors are observed for
suitable values of the system parameters. Furthermore, an electronic circuit realization of the new
hyperchaotic system was carried out via MultiSIM to confirm the feasibility of the theoretical
hyperchaotic model.
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Abstract. A new four-dimensional hyperchaotic system with three quadratic nonlinearities is
proposed in this paper. The dynamical properties of the new hyperchaotic system are explored
in terms of phase portraits, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, etc.
Also, a detailed dynamical analysis of the new hyperchaotic system has been carried out with
bifurcation diagram and Lyapunov exponents. As an engineering application, an electronic
circuit realization of the new hyperchaotic system is designed via MultiSIM to confirm the
feasibility of the theoretical hyperchaotic model.

1. Introduction

Chaotic systems are nonlinear dynamical systems that are highly sensitive to initial conditions [1-2].
Chaotic systems that arise in modelling have many applications in science and engineering such as
weather systems [3], ecology [4], neurons [5], biology [6], cellular neural networks [7], chemical
reactors [8], oscillators [9], robotics [10], encryption [11-12], finance systems [13], circuits [14-15],
secure communication [16], etc.

A hyperchaotic system is a chaotic system having two or more positive Lyapunov exponents [1-2]. The
first hyperchaotic system was reported by Rdssler [17]. Other famous hyperchaotic systems are
hyperchaotic Lorenz system [18], hyperchaotic Chen system [19], hyperchaotic Li system [20],
hyperchaotic Rabinovich system [21], hyperchaotic Vaidyanathan systems [22], etc.

In this research paper, we report the finding of a new hyperchaotic system with three quadratic
nonlinearities. We describe the phase plots of the new hyperchaotic system and do a rigorous dynamic
analysis by finding equilibrium points and their stability, bifurcation diagrams, Lyapunov exponents,
etc. Bifurcation analysis is very useful to understand the special properties of chaotic and hyperchaotic
systems [23-26].

Section 2 describes the new hyperchaotic system, its phase plots and Lyapunov exponents. Section 3
describes the dynamic analysis of the new hyperchaotic system. Furthermore, an electronic circuit

1
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realization of the new chaotic system is presented in detail in Section 4. The circuit experimental results
of the new hyperjerk system in Section 4 agreement with its numerical simulations via MATLAB
obtained in Section 2. Section 5 draws the main conclusions.

2. A new hyperchaotic system with three quadratic nonlinearities

In this work, we report a new 4-D system given by the dynamics
& = a(X — X1) + XoXs

A AR @
| 3 3 12

[)&4 =—d (X +X,)
where X, X,, X5, X, are state variables and a, b, c,d are positive constants.
In this paper, we show that the 4-D system (1) is hyperchaotic for the parameter values

a=30, b=15 c¢=3, d=2 2
For numerical simulations and the calculation of Lyapunov exponents, we take the initial values of the
new system (1) as X (0) = (0.1,0.1,0.1,0.1). Using MATLAB, the Lyapunov exponents of the system
(1) for the parameter values (2) are computed as follows:

LE, =1.3700, LE,=0.1450, LE, =0, LE, =-19.5150 (3)
From the LE spectrum given in (3), it is immediate that the new system (1) is hyperchaotic for the
parameter values (a, b, c,d) = (30,15, 3, 2), since there are two positive Lyapunov exponents in (3).
Since the sum of the Lyapunov exponents in (3) is negative, we also conclude that the 4-D hyperchaotic
system (1) is dissipative. This confirms the existence of a strange hyperchaotic attractor.
The Kaplan-Yorke dimension_of the system (1) is calculated as

D =3+ [ —3.0776, )

“ |LE, |

which gives a measure of the complexity of the new hyperchaotic system (1).
The system (1) is invariant under the change of coordinates given by

(X1 Xas X, Xg) * (Xgy —Xp, Xg, —Xy) ®)
This shows that the system (1) has rotation symmetry about the X, — axis. As a consequence, every non-

trivial trajectory of the 4-D hyperchaotic system (1) must have a twin trajectory.

The equilibrium points of the system (1) are found by solving the system of equations:
[alX2 = X1) + XoXs =0

4 bx —Xx +x =0 (6)

2 13 4
—cx+xx =0
| 3 12

[ -d (Xl + Xz) =0
For solving the nonlinear system (6), we take the parameter values as in (2).
From the last equation in (6), X; = —X,.

Thus, the variable x, can be eliminated and we obtain a nonlinear system of three equations as follows:

—X; (X;+60) =0 (7a)
X, = X, (X3 +15) (7b)
X2 =-3x, (7¢)

We have two cases to consider in solving the nonlinear system (7).

Case (A): x,=0.

In this case, X, =—X, =0. From equations (7a) and (7c), it is clear that x; = x, =0.
Thus, we obtain one equilibrium point of the hyperchaotic system (1) as



o|
4

Case (B): x, #0.
In this case, from (7a), X, =—60. Eq. (7c) gives us x> =180and so X, = ++/180.

E =
0

Since X, = —X, it follows that x, = m~+/180. From Eq. (7c), we find that X, = +£603.7384.

Thus, the hyperchaotic system (1) has two more equilibrium points given by

am |
51:1 _@rf%%d E =: -60 I
| 603.7384 | | -603.7384 |

The Jacobian matrix of the hyperchaotic system (1) at any point Xin
(—a atxs X 0—|

—X b X 1

I(X) = |‘ : ' ‘|
X X - 0
b4 b oo

L ]

We assume that the parameter values are as in the hyperchaotic case (2).
The Jacobian matrix J, = J(E,) has the eigenvalues

A =-3, A,=-30.0443, A,=0.2703, A, =14.7739
This shows that the equilibrium E, is a saddle-point and unstable.
The Jacobian matrix J; = J(E,) has the eigenvalues
A, =0.0254, A, =-19.8140, A,, =0.8943+37.8431i

This shows that the equilibrium E; is a saddle-focus and unstable.

(8)

©)

(10)

(11)

Since J, = J(E,) has the same set of eigenvalues as J,= J (E,), we conclude that the equilibrium E,

is also a saddle-focus and unstable.

Figures 1-4 show the 2-D projections of the new hyperchaotic system (1) in (xl, Xo ) (Xz, X5 ) (X3, X4)

and (X1, X4 ) coordinate planes, respectively.

A 20 10 o 10 20 30

Figure 1. 2-D plot of the new hyperchaotic Figure 2. 2-D plot of the new hyperchaotic

system (1) in the (X1,Xz)plane for

X,=(0.1,0.1,0.1,0.1) and
(@ b,c d) = (30,15,3, 2)

X,=(0.1,0.1,0.1,0.1) and
(ab,c d) = (30,15,3, 2)

system (1) in the (X2,Xs)plane

for



30

Figure 3. 2-D plot of the new hyperchaotic Figure 4. 2-D plot of the new hyperchaotic
system (1) in the (Xu,X) plane for
X,=(0.1,0.1,0.1,0.1) and
(ab,c d) = (30,153, 2)

system (1) in the (X3Xs )plane for
X,=(0.1,0.1,0.1,0.1) and
(a,b,c,d) = (30,15, 3, 2)
3. Bifurcation Analysis for the New Hyperchaotic System
In this section, we describe a detailed bifurcation analysis for the new hyperchaotic system (1)
introduced in Section 2. Bifurcation analysis is an important topic for studying chaotic and hyperchaotic
systems. In addition, multistability means the coexistence of two or more attractors with the same

parameter set but with different initial values. Multistability can lead to very complex behaviors in a
dynamical system. Fix a=30, b=15, d=2 and keep C as the control parameter. When ¢ is varied

in the region of [3,13], the coexisting bifurcation model of the state variable of X, and the
corresponding Lyapunov exponents (for better clarity, only the three largest Lyapunov exponents are
presented, and the missing ones have smaller negative values) with the initial state (0.1,0.1,0.1,0.1) are
plotted in Figure 5 (a) and 5(b), respectively, where the blue orbit starts from the initial state
(0.1,0.1,0.1,0.1) and the magenta orbit starts from the initial state (-0.1,-0.1,0.1,-0.1). From Figure

5(a), we can observe several kinds of coexisting attractors with different initial conditions.

Figure 6 exhibits the coexisting hyperchaotic attractors with ¢ = 6.7 and the coexisting hyperchaotic
attractors with ¢=9, (+,0,—,-) where the blue attractor begins with the initial state (0.1,0.1,0.1,0.1)
and the magenta one begins with the initial state (-0.1,-0.1,0.1,-0.1). Specially, it can be seen that the
system starts from a period-1 orbit with the sign of the Lyapunov exponents (0, —, —, —) in the region of
[12.25,13] and then evolves into quasi-periodic orbits with the sign of the Lyapunov exponents
(0,0,—,-) inthe region of [11.4,12.25) and then goes into chaos with the sign of the Lyapunov exponents
in the region of [6.8,11.4) and finally develops hyperchaos with the sign of the Lyapunov exponents
(+,4,0,-)in the region of [3,6.8) with the control parameter ¢ reducing the region of [3,13]. The

corresponding phase portraits are plotted in Figure 7. From the above analysis, we can conclude that the
system indeed displays very complicated dynamics.

4 6 8 10 12 s 3 8 10 12

Figure 5. Bifurcation diagram and Lyapunov exponents of the new
hyperchaotic system (1), where we fix a=30, b=15, d =2



‘(Ia) ! (b)
Figure 6. For the new hyperchaotic system (1): (a) when ¢ = 6.7, coexisting
hyperchaotic attractors, and (b) when ¢ =9, coexisting chaotic attractors
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Figure 7. For the new hyperchaotic system (1): (a) when ¢ =4, hyperchaos, (b) when
¢ =10, chaos, (c) when ¢ =12, quasi-period, and (d) when ¢ =13, period-1 orbits

4. Circuit Implementation of the New Hyperchaotic System

In this section, circuit design and implementation of new hyperchaotic system (1) are presented to
validate the chaotic behaviour of system (1). The circuit construction of system in (1) has further verified
its complex dynamic behaviors by software MultiSIM. Phase potraits obtained using circuit design of
system (1) is shown in Figure 5. the circuit realization equation of of new hyperchaotic system (1) is

§howr1 in (12)I 1

A =—"x ———x + X X

|+ cg 2 CR ' 10CR 23

‘* - 111 X, - 1 i 1 31 (12)
Z_ﬁ 10C R X,X3 + X4

| 24 CR

1 2 5 2 6
b=— 1 x+_ 1 xx

’ C.R,  10C4R,

|>& L X, — 1 X

U7 TCR T CRy

We choose the system parameters as in the hyperchaotic case, viz.

a=30, b=15 ¢=3, d=2
The values of four capacitors in Figure 8 are taken as C; = C, = C; = C, = 3.2 nF. R; = R, = 13.33 kQ,
R3 = R5 =40 kQ, R4: 26.67 kQ, Re =400 kQ, R7 =133.33 kQ, Rg = Rlo =200 kQ, R11 = R12 = R13 = R14
= R15= Rle =100 kQ.
The circuit simulation result by MultiSIM is illustrated in Figure 9.
It is seen from Figure 9 that phase potraits obtained using circuit implementation matches with the results
obtained using MATLAB simulation.



5. Conclusions

A new four-dimensional hyperchaotic system with three quadratic nonlinearities was announced in this
paper. The dynamical properties of the new hyperchaotic system are described in terms of phase
portraits, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, etc. Also, a detailed bifurcation
analysis of the new hyperchaotic system was carried out with bifurcation diagram and Lyapunov
exponents. Multistability and coexisting chaotic as well as hyperchaotic attractors are observed for
suitable values of the system parameters. Furthermore, an electronic circuit realization of the new
hyperchaotic system was carried out via MultiSIM to confirm the feasibility of the theoretical
hyperchaotic model.
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Figure 8: Circuit design of the new hyperchaotic systém )
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Abstract. A new four-dimensional hyperchaotic system with three quadratic nonlinearities is
proposed in this paper. The dynamical properties of the new hyperchaotic system are explored
in terms of phase portraits, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, etc.
Also, a detailed dynamical analysis of the new hyperchaotic system has been carried out with
bifurcation diagram and Lyapunov exponents. As an engineering application, an electronic
circuit realization of the new hyperchaotic system is designed via MultiSIM to confirm the
feasibility of the theoretical hyperchaotic model.

1. Introduction

Chaotic systems are nonlinear dynamical systems that are highly sensitive to initial conditions [1-2].
Chaotic systems that arise in modelling have many applications in science and engineering such as
weather systems [3], ecology [4], neurons [5], biology [6], cellular neural networks [7], chemical
reactors [8], oscillators [9], robotics [10], encryption [11-12], finance systems [13], circuits [14-15],
secure communication [16], etc.

A hyperchaotic system is a chaotic system having two or more positive Lyapunov exponents [1-2]. The
first hyperchaotic system was reported by Rdossler [17]. Other famous hyperchaotic systems are
hyperchaotic Lorenz system [18], hyperchaotic Chen system [19], hyperchaotic Lii system [20],
hyperchaotic Rabinovich system [21], hyperchaotic Vaidyanathan systems [22], etc.

In this research paper, we report the finding of a new hyperchaotic system with three quadratic
nonlinearities. We describe the phase plots of the new hyperchaotic system and do a rigorous dynamic
analysis by finding equilibrium points and their stability, bifurcation diagrams, Lyapunov exponents,
etc. Bifurcation analysis is very useful to understand the special properties of chaotic and hyperchaotic
systems [23-26].

Section 2 describes the new hyperchaotic system, its phase plots and Lyapunov exponents. Section 3
describes the dynamic analysis of the new hyperchaotic system. Furthermore, an electronic circuit
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realization of the new chaotic system is presented in detail in Section 4. The circuit experimental results
of the new hyperjerk system in Section 4 agreement with its numerical simulations via MATLAB
obtained in Section 2. Section 5 draws the main conclusions.

2. A new hyperchaotic system with three quadratic nonlinearities
In this work, we report a new 4-D system given by the dynamics
X =alx, —x)+x,x,
X, =bx, —x,x, +x, (D)
X, =—cx; + XX,
X, =—d(x, +x,)
where x,,Xx,, x;, X, are state variables and a,b, c,d are positive constants.
In this paper, we show that the 4-D system (1) is Ayperchaotic for the parameter values
a=30, b=15, ¢=3, d=2 2)
For numerical simulations and the calculation of Lyapunov exponents, we take the initial values of the
new system (1) as X (0)=(0.1,0.1,0.1,0.1). Using MATLAB, the Lyapunov exponents of the system
(1) for the parameter values (2) are computed as follows:
LE, =1.3700, LE, =0.1450, LE, =0, LE, =-19.5150 3)
From the LE spectrum given in (3), it is immediate that the new system (1) is hyperchaotic for the
parameter values (a,b,c,d)=(30,15,3,2),since there are two positive Lyapunov exponents in (3).

Since the sum of the Lyapunov exponents in (3) is negative, we also conclude that the 4-D hyperchaotic
system (1) is dissipative. This confirms the existence of a strange hyperchaotic attractor.
The Kaplan-Yorke dimension of the system (1) is calculated as

LE, +LE, + LE
D,, =3+ 2T 3 0776, )
| LE, |

which gives a measure of the complexity of the new hyperchaotic system (1).
The system (1) is invariant under the change of coordinates given by

(xl,xz,x3,x4)H(—xl,—xz,x3,—x4) (5)

This shows that the system (1) has rotation symmetry about the x, — axis. As a consequence, every non-

trivial trajectory of the 4-D hyperchaotic system (1) must have a twin trajectory.
The equilibrium points of the system (1) are found by solving the system of equations:
a(x, —x)+x,x,=0

bx, —xx;+x,=0 (6)
—cx, +xx, =0
—d(x,+x,)=0
For solving the nonlinear system (6), we take the parameter values as in (2).
From the last equation in (6), x, = —x,.

Thus, the variable x, can be eliminated and we obtain a nonlinear system of three equations as follows:

=X, (x; +60)=0 (7a)
x, = x,(x; +15) (7b)
x; =-3x, (7¢)
We have two cases to consider in solving the nonlinear system (7).
Case (A): x, =0.

In this case, x, =—x, = 0. From equations (7a) and (7c), it is clear that x, = x, = 0.
Thus, we obtain one equilibrium point of the hyperchaotic system (1) as
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Case (B): x, #0.
In this case, from (7a), x, = —60. Eq. (7c) gives us x; =180 and so x, =+~/180.
Since x, = —x,, it follows that x, =++/180. From Eq. (7c), we find that x, = +603.7384.
Thus, the hyperchaotic system (1) has two more equilibrium points given by
V180 —v180
and 9
g =| 180 E - Jiso | ©)
-60 -60
603.7384 —603.7384
The Jacobian matrix of the hyperchaotic system (1) at any point X in
-a a+x; x, 0
X, b -x 1 (10)

Jx)=|
) X, X, - 0
-d —d 0 0
We assume that the parameter values are as in the hyperchaotic case (2).

The Jacobian matrix J,, = J(E|)) has the eigenvalues
A =-3, 4,=-30.0443, 1,=0.2703, A,=14.7739 (11)
This shows that the equilibrium £, is a saddle-point and unstable.
The Jacobian matrix J, = J(E,) has the eigenvalues
A4 =0.0254, 4, =-19.8140, 4,,=0.8943+£37.8431i
This shows that the equilibrium £ is a saddle-focus and unstable.

Since J, = J(E,) has the same set of eigenvalues as J, = J(E,), we conclude that the equilibrium £,
is also a saddle-focus and unstable.

Figures 1-4 show the 2-D projections of the new hyperchaotic system (1) in (xl , X, ) , (x2 » X5 ) R (x3 X, )

and (xl, X, ) coordinate planes, respectively.

%o

Figure 1. 2-D plot of the new hyperchaotic Figure 2. 2-D plot of the new hyperchaotic
system (1) in the (xz,x3)p1ane for
X,=1(0.1,0.1,0.1,0.1) and

(a,b,c,d)=(30,15,3,2)

system (1) in the (xl,xz)plane for
X,=(0.1,0.1,0.1,0.1) and
(a,b,c,d)=(30,15,3,2)
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Fi 4. 2-D plot of th h, haoti
Figure 3. 2-D plot of the new hyperchaotic tgure 'po oF Hie fiew yperehactic
system (1) in the (xl,x4) plane for
X,=1(0.1,0.1,0.1,0.1) and

(a,b,c,d)=(30,15,3,2)

system (1) in the (x3,x4)plane for
X,=(0.1,0.1,0.1,0.1) and
(a,b,c,d)=(30,15,3,2)
3. Bifurcation Analysis for the New Hyperchaotic System
In this section, we describe a detailed bifurcation analysis for the new hyperchaotic system (1)
introduced in Section 2. Bifurcation analysis is an important topic for studying chaotic and hyperchaotic
systems. In addition, multistability means the coexistence of two or more attractors with the same

parameter set but with different initial values. Multistability can lead to very complex behaviors in a
dynamical system. Fix « =30, =15, d =2 andkeep ¢ as the control parameter. When c is varied

in the region of [3,13], the coexisting bifurcation model of the state variable of x, and the

corresponding Lyapunov exponents (for better clarity, only the three largest Lyapunov exponents are
presented, and the missing ones have smaller negative values) with the initial state (0.1,0.1,0.1,0.1) are

plotted in Figure 5 (a) and 5(b), respectively, where the blue orbit starts from the initial state
(0.1,0.1,0.1,0.1) and the magenta orbit starts from the initial state (—0.1,-0.1,0.1,—0.1). From Figure

5(a), we can observe several kinds of coexisting attractors with different initial conditions.

Figure 6 exhibits the coexisting hyperchaotic attractors with ¢ =6.7 and the coexisting hyperchaotic
attractors with ¢ =9, (+,0,—,—) where the blue attractor begins with the initial state (0.1,0.1,0.1,0.1)

and the magenta one begins with the initial state (—0.1,-0.1,0.1,—-0.1). Specially, it can be seen that the
system starts from a period-1 orbit with the sign of the Lyapunov exponents (0,—,—,—) in the region of
[12.25,13]and then evolves into quasi-periodic orbits with the sign of the Lyapunov exponents
(0,0,—,—) in the region of [11.4,12.25) and then goes into chaos with the sign of the Lyapunov exponents
in the region of [6.8,11.4) and finally develops hyperchaos with the sign of the Lyapunov exponents
(+,+,0,—) in the region of [3,6.8) with the control parameter ¢ reducing the region of [3,13]. The

corresponding phase portraits are plotted in Figure 7. From the above analysis, we can conclude that the
system indeed displays very complicated dynamics.
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Figure 5. Bifurcation diagram and Lyapunov exponents of the new
hyperchaotic system (1), where we fix a =30, b=15, d =2
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Figure 6. For the new hyperchaotic system (1): (a) when ¢ = 6.7, coexisting
hyperchaotic attractors, and (b) when ¢ =9, coexisting chaotic attractors
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Figure 7. For the new hyperchaotic system (1): (a) when ¢ = 4, hyperchaos, (b) when
¢ =10, chaos, (c) when ¢ =12, quasi-period, and (d) when ¢ =13, period-1 orbits

4. Circuit Implementation of the New Hyperchaotic System

In this section, circuit design and implementation of new hyperchaotic system (1) are presented to
validate the chaotic behaviour of system (1). The circuit construction of system in (1) has further verified
its complex dynamic behaviors by software MultiSIM. Phase potraits obtained using circuit design of
system (1) is shown in Figure 5. the circuit realization equation of of new hyperchaotic system (1) is
shown in (12):

o1 1

X, =ﬁx2 —@xl +szx3

X, = ! X, — ! X, X ! X (12)
2GR, 0GR, GR Y
X ——;x + ! X, X
> CR, 7 10CR,
1 1
X, =

TCR U CR,
We choose the system parameters as in the hyperchaotic case, viz.

a=30, b=15 ¢=3, d=2
The values of four capacitors in Figure 8 are taken as C1= C, = C3 = C4 = 3.2 nF. R = R,=13.33 kQ,
R3=Rs=40kQ, Rs=26.67 kQ, Re=400kQ, R7=133.33kQ, Ry=Ri10=200kQ, Ri1=Ri2=Ri3=Rus
= Ri5= Ris= 100 kQ.
The circuit simulation result by MultiSIM is illustrated in Figure 9.
It is seen from Figure 9 that phase potraits obtained using circuit implementation matches with the results
obtained using MATLAB simulation.
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5. Conclusions

A new four-dimensional hyperchaotic system with three quadratic nonlinearities was announced in this
paper. The dynamical properties of the new hyperchaotic system are described in terms of phase
portraits, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, etc. Also, a detailed bifurcation
analysis of the new hyperchaotic system was carried out with bifurcation diagram and Lyapunov
exponents. Multistability and coexisting chaotic as well as hyperchaotic attractors are observed for
suitable values of the system parameters. Furthermore, an electronic circuit realization of the new
hyperchaotic system was carried out via MultiSIM to confirm the feasibility of the theoretical
hyperchaotic model.
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Figure 8: Circuit design of the new hyperchaotic systém (D)
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Figure 9: Hyperhaotic attractors of system (1) using Multisim circuit simulation:
(a) inx1 - x» plane, (b) x» - x3 plane, (c) x3 - x4 plane and (d) x; - x4 plane .
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