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Abstract. A new four-dimensional hyperchaotic system with three quadratic nonlinearities is proposed in this 

paper. The dynamical properties of the new hyperchaotic system are explored in terms of phase portraits, 

Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, etc. Also, a detailed dynamical analysis of the new 

hyperchaotic system has been carried out with bifurcation diagram and Lyapunov exponents. As an engineering 

application, an electronic circuit realization of the new hyperchaotic system is designed via MultiSIM to confirm 
the feasibility of the theoretical hyperchaotic model. 

 
 

1. Introduction 

Chaotic systems are nonlinear dynamical systems that are highly sensitive to initial conditions [1-2]. 

Chaotic systems that arise in modelling have many applications in science and engineering such as 

weather systems [3], ecology [4], neurons [5], biology [6], cellular neural networks [7], chemical 

reactors [8], oscillators [9], robotics [10], encryption [11-12], finance systems [13], circuits [14-15], 
secure communication [16], etc. 

A hyperchaotic system is a chaotic system having two or more positive Lyapunov exponents [1-2]. The 

first hyperchaotic system was reported by Rössler [17]. Other famous hyperchaotic systems are 

hyperchaotic Lorenz system [18], hyperchaotic Chen system [19], hyperchaotic Lü system [20], 
hyperchaotic Rabinovich system [21], hyperchaotic Vaidyanathan systems [22], etc. 

In this research paper, we report the finding of a new hyperchaotic system with three quadratic 

nonlinearities. We describe the phase plots of the new hyperchaotic system and do a rigorous dynamic 
analysis by finding equilibrium points and their stability, bifurcation diagrams, Lyapunov exponents, 

etc. Bifurcation analysis is very useful to understand the special properties of chaotic and hyperchaotic 

systems [23-26]. 

Section 2 describes the new hyperchaotic system, its phase plots and Lyapunov exponents. Section 3 

describes the dynamic analysis of the new hyperchaotic system. Furthermore, an electronic circuit 
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realization of the new chaotic system is presented in detail in Section 4. The circuit experimental results 

of the new hyperjerk system in Section 4 agreement with its numerical simulations via MATLAB 
obtained in Section 2. Section 5 draws the main conclusions. 

2. A new hyperchaotic system with three quadratic nonlinearities 
In this work, we report a new 4-D system given by the dynamics 

x&1   a(x2  x1)  x2 x3 


x&  bx  x x  x (1) 
x&   cx   x x 

 

 
where 

 3 3 1   2 

x&4   d (x1   x2 ) 

x1 , x2 , x3 , x4 are state variables and a, b, c, d are positive constants. 

In this paper, we show that the 4-D system (1) is hyperchaotic for the parameter values 

a  30, b  15, c  3, d  2 (2) 

For numerical simulations and the calculation of Lyapunov exponents, we take the initial values of the 

new system (1) as X (0)  (0.1, 0.1, 0.1, 0.1). Using MATLAB, the Lyapunov exponents of the system 

(1) for the parameter values (2) are computed as follows: 

LE1  1.3700, LE2  0.1450, LE3  0, LE4  19.5150 
 

(3) 

From the LE spectrum given in (3), it is immediate that the new system (1) is hyperchaotic for the 

parameter values (a, b, c, d )  (30,15, 3, 2), since there are two positive Lyapunov exponents in (3). 

Since the sum of the Lyapunov exponents in (3) is negative, we also conclude that the 4-D hyperchaotic 

system (1) is dissipative. This confirms the existence of a strange hyperchaotic attractor. 
The Kaplan-Yorke dimension of the system (1) is calculated as 

D  3  
LE1  LE2  LE3  3.0776, 

 

(4) 
KY 

| LE | 

which gives a measure of the complexity of the new hyperchaotic system (1). 
The system (1) is invariant under the change of coordinates given by 

(x1 , x2 , x3 , x4 )  (x1 , x2 , x3 ,  x4 ) 

 

 
(5) 

This shows that the system (1) has rotation symmetry about the x3  axis. As a consequence, every non- 

trivial trajectory of the 4-D hyperchaotic system (1) must have a twin trajectory. 

The equilibrium points of the system (1) are found by solving the system of equations: 
a(x2  x1)  x2 x3  0    

bx  x x  x  0 (6) 
 2 1   3 4  

 cx  x x  0 
 3 1 2 

  d (x1   x2 )  0 

For solving the nonlinear system (6), we take the parameter values as in (2). 

From the last equation in (6), x1   x2 . 

Thus, the variable x2 can be eliminated and we obtain a nonlinear system of three equations as follows: 

x1 (x3  60)  0 

x4  x1 (x3 15) 

x2  3x 

We have two cases to consider in solving the nonlinear system (7). 

(7a) 

(7b) 

(7c) 

Case (A): x1  0. 

In this case, x2   x1  0. From equations (7a) and (7c), it is clear that x3  x4  0. 

Thus, we obtain one equilibrium point of the hyperchaotic system (1) as 
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180 180 

0 

1 

 

 

0
0E    . 

(8) 

0        
0
 
 

Case (B): x1  0. 

In this case, from (7a), x3  60. Eq. (7c) gives us x2  180 and so x1  

Since x2   x1 , it follows that x2  m 180. From Eq. (7c), we find that x4  603.7384. 

Thus, the hyperchaotic system (1) has two more equilibrium points given by 
      
 
 

 and  

 
(9) 

E    E   .  
60 

  
60 




 

603.7384

 

603.7384

The Jacobian matrix of the hyperchaotic system (1) at any point x in 
 a a  x3 x2 0x b x 1


(10) 

J (x)      
3 1 

 x2 x1 c 0 
d d 0 0




 

We assume that the parameter values are as in the hyperchaotic case (2). 

The Jacobian matrix J0   J (E0 ) has the eigenvalues 

1  3, 2  30.0443, 3  0.2703, 4  14.7739 (11) 

This shows that the equilibrium E0 is a saddle-point and unstable. 

The Jacobian matrix J1  J (E1 ) has the eigenvalues 

1  0.0254, 2  19.8140, 3,4  0.8943  37.8431i 

This shows that the equilibrium E1 is a saddle-focus and unstable. 

Since J 2  J (E2 ) has the same set of eigenvalues as J1  J (E1 ) , we conclude that the equilibrium E2 

is also a saddle-focus and unstable. 

Figures 1-4 show the 2-D projections of the new hyperchaotic system (1) in  x1, x2 ,  x2 , x3 ,  x3 , x4 

and  x1, x4  coordinate planes, respectively. 
 

  
Figure 1. 2-D plot of the new hyperchaotic Figure 2. 2-D plot of the new hyperchaotic 

system (1) in the  x1, x2 

X 0  (0.1, 0.1, 0.1, 0.1) and 

(a, b, c, d )  (30,15, 3, 2) 

 plane for 
system (1) in the  x2 , x3  plane for 

X 0  (0.1, 0.1, 0.1, 0.1) and 

(a, b, c, d )  (30,15, 3, 2) 

180 180 

180. 

1 2 
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Figure 3. 2-D plot of the new hyperchaotic Figure 4. 2-D plot of the new hyperchaotic 

system (1) in the  x3, x4 

X 0  (0.1, 0.1, 0.1, 0.1) and 

(a, b, c, d )  (30,15, 3, 2) 

 plane for 
system (1) in the  x1, x4 
X 0  (0.1, 0.1, 0.1, 0.1) and 

(a, b, c, d )  (30,15, 3, 2) 

plane for 

3. Bifurcation Analysis for the New Hyperchaotic System 

In this section, we describe a detailed bifurcation analysis for the new hyperchaotic system (1) 

introduced in Section 2. Bifurcation analysis is an important topic for studying chaotic and hyperchaotic 
systems. In addition, multistability means the coexistence of two or more attractors with the same 

parameter set but with different initial values. Multistability can lead to very complex behaviors in a 

dynamical system. Fix a  30, b  15, d  2 and keep c as the control parameter. When c is varied 

in the region of [3,13], the coexisting bifurcation model of the state variable of x4    and the 

corresponding Lyapunov exponents (for better clarity, only the three largest Lyapunov exponents are 

presented, and the missing ones have smaller negative values) with the initial state (0.1, 0.1, 0.1, 0.1) are 

plotted in Figure 5 (a) and 5(b), respectively, where the blue orbit starts from the initial state 

(0.1, 0.1, 0.1, 0.1) and the magenta orbit starts from the initial state (0.1, 0.1, 0.1, 0.1). From Figure 

5(a), we can observe several kinds of coexisting attractors with different initial conditions. 

Figure 6 exhibits the coexisting hyperchaotic attractors with c  6.7 and the coexisting hyperchaotic 

attractors with c  9, (, 0, , ) where the blue attractor begins with the initial state (0.1, 0.1, 0.1, 0.1) 

and the magenta one begins with the initial state (0.1, 0.1, 0.1, 0.1). Specially, it can be seen that the 

system starts from a period-1 orbit with the sign of the Lyapunov exponents (0, , , ) in the region of 

[12.25,13] and then evolves into quasi-periodic orbits with the sign of the Lyapunov exponents 

(0,0, , ) in the region of [11.4,12.25) and then goes into chaos with the sign of the Lyapunov exponents 

in the region of [6.8,11.4) and finally develops hyperchaos with the sign of the Lyapunov exponents 

(, , 0, ) in the region of [3, 6.8) with the control parameter c reducing the region of [3,13]. The 

corresponding phase portraits are plotted in Figure 7. From the above analysis, we can conclude that the 

system indeed displays very complicated dynamics. 

Figure 5. Bifurcation diagram and Lyapunov exponents of the new 

hyperchaotic system (1), where we fix a  30, b  15, d  2 
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Figure 6. For the new hyperchaotic system (1): (a) when c  6.7, coexisting 

hyperchaotic attractors, and (b) when c  9, coexisting chaotic attractors 

Figure 7. For the new hyperchaotic system (1): (a)  when c  4, hyperchaos, (b) when 

c  10, chaos, (c) when c  12, quasi-period, and (d) when c  13, period-1 orbits 

4. Circuit Implementation of the New Hyperchaotic System 

In this section, circuit design and implementation of new hyperchaotic system (1) are presented to 
validate the chaotic behaviour of system (1). The circuit construction of system in (1) has further verified 

its complex dynamic behaviors by software MultiSIM. Phase potraits obtained using circuit design of 

system (1) is shown in Figure 5. the circuit realization equation of of new hyperchaotic system (1) is 

shown in (12): 


x&   
   1    

x  
   1    

x 
     1     

x x 
 1       

C R   
2 C R    1    10C R    2 3 

 1    1 1    2 1    3 
 1 1 1 (12) 
x&2  

C  R
 x2  

10C R x1 x3  
C R   

x4 

 2     4 

 
1

 
x&3  


x3 



2    5 2     6 

1 
x1 x2 

 




x&4  



C3 R7 

1 
 

 

C4 R9 

 
x1 

10C3 R8 

1 
 

 

2 

4    10 

We choose the system parameters as in the hyperchaotic case, viz. 
a  30, b  15, c  3, d  2 

The values of four capacitors in Figure 8 are taken as C1 = C2 = C3 = C4 = 3.2 nF. R1 = R2 = 13.33 kΩ, 
R3 = R5 = 40 kΩ, R4 = 26.67 kΩ, R6 = 400 kΩ, R7 = 133.33 kΩ, R9 = R10 = 200 kΩ, R11 = R12 = R13 = R14 

= R15 = R16 = 100 kΩ. 

The circuit simulation result by MultiSIM is illustrated in Figure 9. 
It is seen from Figure 9 that phase potraits obtained using circuit implementation matches with the results 

obtained using MATLAB simulation. 

x 
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5. Conclusions 

A new four-dimensional hyperchaotic system with three quadratic nonlinearities was announced in this 

paper. The dynamical properties of the new hyperchaotic system are described in terms of phase 
portraits, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, etc. Also, a detailed bifurcation 

analysis of the new hyperchaotic system was carried out with bifurcation diagram and Lyapunov 

exponents. Multistability and coexisting chaotic as well as hyperchaotic attractors are observed for 

suitable values of the system parameters. Furthermore, an electronic circuit realization of the new 
hyperchaotic system was carried out via MultiSIM to confirm the feasibility of the theoretical 

hyperchaotic model. 

 
Figure 8: Circuit design of the new hyperchaotic system (1) 

(a) (b) 
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(c) (d) 

Figure 9: Hyperhaotic attractors of system (1) using Multisim circuit simulation: 
(a) in x1 - x2 plane, (b) x2 - x3 plane, (c) x3 - x4 plane and (d) x1 - x4 plane . 
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Abstract. A new four-dimensional hyperchaotic system with three quadratic nonlinearities is 

proposed in this paper. The dynamical properties of the new hyperchaotic system are explored 

in terms of phase portraits, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, etc. 

Also, a detailed dynamical analysis of the new hyperchaotic system has been carried out with 

bifurcation diagram and Lyapunov exponents. As an engineering application, an electronic 

circuit realization of the new hyperchaotic system is designed via MultiSIM to confirm the 
feasibility of the theoretical hyperchaotic model. 

 
 

1. Introduction 

Chaotic systems are nonlinear dynamical systems that are highly sensitive to initial conditions [1-2]. 
Chaotic systems that arise in modelling have many applications in science and engineering such as 

weather systems [3], ecology [4], neurons [5], biology [6], cellular neural networks [7], chemical 

reactors [8], oscillators [9], robotics [10], encryption [11-12], finance systems [13], circuits [14-15], 
secure communication [16], etc. 

A hyperchaotic system is a chaotic system having two or more positive Lyapunov exponents [1-2]. The 

first hyperchaotic system was reported by Rössler [17]. Other famous hyperchaotic systems are 

hyperchaotic Lorenz system [18], hyperchaotic Chen system [19], hyperchaotic Lü system [20], 
hyperchaotic Rabinovich system [21], hyperchaotic Vaidyanathan systems [22], etc. 

In this research paper, we report the finding of a new hyperchaotic system with three quadratic 

nonlinearities. We describe the phase plots of the new hyperchaotic system and do a rigorous dynamic 
analysis by finding equilibrium points and their stability, bifurcation diagrams, Lyapunov exponents, 

etc. Bifurcation analysis is very useful to understand the special properties of chaotic and hyperchaotic 

systems [23-26]. 

Section 2 describes the new hyperchaotic system, its phase plots and Lyapunov exponents. Section 3 

describes the dynamic analysis of the new hyperchaotic system. Furthermore, an electronic circuit 
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realization of the new chaotic system is presented in detail in Section 4. The circuit experimental results 

of the new hyperjerk system in Section 4 agreement with its numerical simulations via MATLAB 
obtained in Section 2. Section 5 draws the main conclusions. 

2. A new hyperchaotic system with three quadratic nonlinearities 
In this work, we report a new 4-D system given by the dynamics 

x&1   a(x2  x1)  x2 x3 


x&  bx  x x  x (1) 
x&   cx   x x 

 

 
where 

 3 3 1   2 

x&4   d (x1   x2 ) 

x1 , x2 , x3 , x4 are state variables and a, b, c, d are positive constants. 

In this paper, we show that the 4-D system (1) is hyperchaotic for the parameter values 

a  30, b  15, c  3, d  2 (2) 

For numerical simulations and the calculation of Lyapunov exponents, we take the initial values of the 

new system (1) as X (0)  (0.1, 0.1, 0.1, 0.1). Using MATLAB, the Lyapunov exponents of the system 

(1) for the parameter values (2) are computed as follows: 

LE1  1.3700, LE2  0.1450, LE3  0, LE4  19.5150 
 

(3) 

From the LE spectrum given in (3), it is immediate that the new system (1) is hyperchaotic for the 

parameter values (a, b, c, d )  (30,15, 3, 2), since there are two positive Lyapunov exponents in (3). 

Since the sum of the Lyapunov exponents in (3) is negative, we also conclude that the 4-D hyperchaotic 

system (1) is dissipative. This confirms the existence of a strange hyperchaotic attractor. 
The Kaplan-Yorke dimension of the system (1) is calculated as 

D  3  
LE1  LE2  LE3  3.0776, 

 

(4) 
KY 

| LE | 

which gives a measure of the complexity of the new hyperchaotic system (1). 
The system (1) is invariant under the change of coordinates given by 

(x1 , x2 , x3 , x4 )  (x1 , x2 , x3 ,  x4 ) 

 

 
(5) 

This shows that the system (1) has rotation symmetry about the x3  axis. As a consequence, every non- 

trivial trajectory of the 4-D hyperchaotic system (1) must have a twin trajectory. 

The equilibrium points of the system (1) are found by solving the system of equations: 
a(x2  x1)  x2 x3  0    

bx  x x  x  0 (6) 
 2 1   3 4  

 cx  x x  0 
 3 1 2 

  d (x1   x2 )  0 

For solving the nonlinear system (6), we take the parameter values as in (2). 

From the last equation in (6), x1   x2 . 

Thus, the variable x2 can be eliminated and we obtain a nonlinear system of three equations as follows: 

x1 (x3  60)  0 

x4  x1 (x3 15) 

x2  3x 

We have two cases to consider in solving the nonlinear system (7). 

(7a) 

(7b) 

(7c) 

Case (A): x1  0. 

In this case, x2   x1  0. From equations (7a) and (7c), it is clear that x3  x4  0. 

Thus, we obtain one equilibrium point of the hyperchaotic system (1) as 
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180 180 

0 

1 

 

 

0
0E    . 

(8) 

0        
0
 
 

Case (B): x1  0. 

In this case, from (7a), x3  60. Eq. (7c) gives us x2  180 and so x1  

Since x2   x1 , it follows that x2  m 180. From Eq. (7c), we find that x4  603.7384. 

Thus, the hyperchaotic system (1) has two more equilibrium points given by 
      
 
 

 and  

 
(9) 

E    E   .  
60 

  
60 




 

603.7384

 

603.7384

The Jacobian matrix of the hyperchaotic system (1) at any point x in 
 a a  x3 x2 0x b x 1


(10) 

J (x)      
3 1 

 x2 x1 c 0 
d d 0 0




 

We assume that the parameter values are as in the hyperchaotic case (2). 

The Jacobian matrix J0   J (E0 ) has the eigenvalues 

1  3, 2  30.0443, 3  0.2703, 4  14.7739 (11) 

This shows that the equilibrium E0 is a saddle-point and unstable. 

The Jacobian matrix J1  J (E1 ) has the eigenvalues 

1  0.0254, 2  19.8140, 3,4  0.8943  37.8431i 

This shows that the equilibrium E1 is a saddle-focus and unstable. 

Since J 2  J (E2 ) has the same set of eigenvalues as J1  J (E1 ) , we conclude that the equilibrium E2 

is also a saddle-focus and unstable. 

Figures 1-4 show the 2-D projections of the new hyperchaotic system (1) in  x1, x2 ,  x2 , x3 ,  x3 , x4 

and  x1, x4  coordinate planes, respectively. 
 

  
Figure 1. 2-D plot of the new hyperchaotic Figure 2. 2-D plot of the new hyperchaotic 

system (1) in the  x1, x2 

X 0  (0.1, 0.1, 0.1, 0.1) and 

(a, b, c, d )  (30,15, 3, 2) 

 plane for 
system (1) in the  x2 , x3  plane for 

X 0  (0.1, 0.1, 0.1, 0.1) and 

(a, b, c, d )  (30,15, 3, 2) 

180 180 

180. 

1 2 
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Figure 3. 2-D plot of the new hyperchaotic Figure 4. 2-D plot of the new hyperchaotic 

system (1) in the  x3, x4 

X 0  (0.1, 0.1, 0.1, 0.1) and 

(a, b, c, d )  (30,15, 3, 2) 

 plane for 
system (1) in the  x1, x4 
X 0  (0.1, 0.1, 0.1, 0.1) and 

(a, b, c, d )  (30,15, 3, 2) 

plane for 

3. Bifurcation Analysis for the New Hyperchaotic System 

In this section, we describe a detailed bifurcation analysis for the new hyperchaotic system (1) 

introduced in Section 2. Bifurcation analysis is an important topic for studying chaotic and hyperchaotic 
systems. In addition, multistability means the coexistence of two or more attractors with the same 

parameter set but with different initial values. Multistability can lead to very complex behaviors in a 

dynamical system. Fix a  30, b  15, d  2 and keep c as the control parameter. When c is varied 

in the region of [3,13], the coexisting bifurcation model of the state variable of x4    and the 

corresponding Lyapunov exponents (for better clarity, only the three largest Lyapunov exponents are 

presented, and the missing ones have smaller negative values) with the initial state (0.1, 0.1, 0.1, 0.1) are 

plotted in Figure 5 (a) and 5(b), respectively, where the blue orbit starts from the initial state 

(0.1, 0.1, 0.1, 0.1) and the magenta orbit starts from the initial state (0.1, 0.1, 0.1, 0.1). From Figure 

5(a), we can observe several kinds of coexisting attractors with different initial conditions. 

Figure 6 exhibits the coexisting hyperchaotic attractors with c  6.7 and the coexisting hyperchaotic 

attractors with c  9, (, 0, , ) where the blue attractor begins with the initial state (0.1, 0.1, 0.1, 0.1) 

and the magenta one begins with the initial state (0.1, 0.1, 0.1, 0.1). Specially, it can be seen that the 

system starts from a period-1 orbit with the sign of the Lyapunov exponents (0, , , ) in the region of 

[12.25,13] and then evolves into quasi-periodic orbits with the sign of the Lyapunov exponents 

(0,0, , ) in the region of [11.4,12.25) and then goes into chaos with the sign of the Lyapunov exponents 

in the region of [6.8,11.4) and finally develops hyperchaos with the sign of the Lyapunov exponents 

(, , 0, ) in the region of [3, 6.8) with the control parameter c reducing the region of [3,13]. The 

corresponding phase portraits are plotted in Figure 7. From the above analysis, we can conclude that the 

system indeed displays very complicated dynamics. 

Figure 5. Bifurcation diagram and Lyapunov exponents of the new 

hyperchaotic system (1), where we fix a  30, b  15, d  2 
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Figure 6. For the new hyperchaotic system (1): (a) when c  6.7, coexisting 

hyperchaotic attractors, and (b) when c  9, coexisting chaotic attractors 

Figure 7. For the new hyperchaotic system (1): (a)  when c  4, hyperchaos, (b) when 

c  10, chaos, (c) when c  12, quasi-period, and (d) when c  13, period-1 orbits 

4. Circuit Implementation of the New Hyperchaotic System 

In this section, circuit design and implementation of new hyperchaotic system (1) are presented to 
validate the chaotic behaviour of system (1). The circuit construction of system in (1) has further verified 

its complex dynamic behaviors by software MultiSIM. Phase potraits obtained using circuit design of 

system (1) is shown in Figure 5. the circuit realization equation of of new hyperchaotic system (1) is 

shown in (12): 


x&   
   1    

x  
   1    

x 
     1     

x x 
 1       

C R   
2 C R    1    10C R    2 3 

 1    1 1    2 1    3 
 1 1 1 (12) 
x&2  

C  R
 x2  

10C R x1 x3  
C R   

x4 

 2     4 

 
1

 
x&3  


x3 



2    5 2     6 

1 
x1 x2 

 




x&4  



C3 R7 

1 
 

 

C4 R9 

 
x1 

10C3 R8 

1 
 

 

2 

4    10 

We choose the system parameters as in the hyperchaotic case, viz. 
a  30, b  15, c  3, d  2 

The values of four capacitors in Figure 8 are taken as C1 = C2 = C3 = C4 = 3.2 nF. R1 = R2 = 13.33 kΩ, 
R3 = R5 = 40 kΩ, R4 = 26.67 kΩ, R6 = 400 kΩ, R7 = 133.33 kΩ, R9 = R10 = 200 kΩ, R11 = R12 = R13 = R14 

= R15 = R16 = 100 kΩ. 

The circuit simulation result by MultiSIM is illustrated in Figure 9. 
It is seen from Figure 9 that phase potraits obtained using circuit implementation matches with the results 

obtained using MATLAB simulation. 

x 
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5. Conclusions 

A new four-dimensional hyperchaotic system with three quadratic nonlinearities was announced in this 

paper. The dynamical properties of the new hyperchaotic system are described in terms of phase 
portraits, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, etc. Also, a detailed bifurcation 

analysis of the new hyperchaotic system was carried out with bifurcation diagram and Lyapunov 

exponents. Multistability and coexisting chaotic as well as hyperchaotic attractors are observed for 

suitable values of the system parameters. Furthermore, an electronic circuit realization of the new 
hyperchaotic system was carried out via MultiSIM to confirm the feasibility of the theoretical 

hyperchaotic model. 

 
Figure 8: Circuit design of the new hyperchaotic system (1) 

(a) (b) 
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(c) (d) 

Figure 9: Hyperhaotic attractors of system (1) using Multisim circuit simulation: 
(a) in x1 - x2 plane, (b) x2 - x3 plane, (c) x3 - x4 plane and (d) x1 - x4 plane . 
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Abstract. A new four-dimensional hyperchaotic system with three quadratic nonlinearities is 
proposed in this paper. The dynamical properties of the new hyperchaotic system are explored 
in terms of phase portraits, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, etc. 
Also, a detailed dynamical analysis of the new hyperchaotic system has been carried out with 
bifurcation diagram and Lyapunov exponents. As an engineering application, an electronic 
circuit realization of the new hyperchaotic system is designed via MultiSIM to confirm the 
feasibility of the theoretical hyperchaotic model. 

1.  Introduction 

Chaotic systems are nonlinear dynamical systems that are highly sensitive to initial conditions [1-2]. 
Chaotic systems that arise in modelling have many applications in science and engineering such as 
weather systems [3], ecology [4], neurons [5], biology [6], cellular neural networks [7], chemical 
reactors [8], oscillators [9], robotics [10], encryption [11-12], finance systems [13], circuits [14-15], 
secure communication [16], etc. 

A hyperchaotic system is a chaotic system having two or more positive Lyapunov exponents [1-2]. The 
first hyperchaotic system was reported by Rössler [17]. Other famous hyperchaotic systems are 
hyperchaotic Lorenz system [18], hyperchaotic Chen system [19], hyperchaotic Lü system [20], 
hyperchaotic Rabinovich system [21], hyperchaotic Vaidyanathan systems [22], etc.  

In this research paper, we report the finding of a new hyperchaotic system with three quadratic 
nonlinearities. We describe the phase plots of the new hyperchaotic system and do a rigorous dynamic 
analysis by finding equilibrium points and their stability, bifurcation diagrams, Lyapunov exponents, 
etc. Bifurcation analysis is very useful to understand the special properties of chaotic and hyperchaotic 
systems [23-26]. 

Section 2 describes the new hyperchaotic system, its phase plots and Lyapunov exponents. Section 3 
describes the dynamic analysis of the new hyperchaotic system. Furthermore, an electronic circuit 
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realization of the new chaotic system is presented in detail in Section 4. The circuit experimental results 
of the new hyperjerk system in Section 4 agreement with its numerical simulations via MATLAB 
obtained in Section 2. Section 5 draws the main conclusions. 

2.  A new hyperchaotic system with three quadratic nonlinearities 

In this work, we report a new 4-D system given by the dynamics 

1 2 1 2 3

2 2 1 3 4

3 3 1 2

4 1 2

( )

( )

x a x x x x

x bx x x x

x cx x x

x d x x

  
   


  
   

&

&

&

&

        (1) 

where 1 2 3 4, , ,x x x x are state variables and , , ,a b c d are positive constants.  

In this paper, we show that the 4-D system (1) is hyperchaotic for the parameter values 
  30,   15,   3,   2a b c d          (2) 

For numerical simulations and the calculation of Lyapunov exponents, we take the initial values of the 
new system (1) as (0) (0.1, 0.1, 0.1, 0.1).X   Using MATLAB, the Lyapunov exponents of the system 

(1) for the parameter values (2) are computed as follows: 

 1 2 3 41.3700,  0.1450,  0,  19.5150LE LE LE LE        (3) 

From the LE spectrum given in (3), it is immediate that the new system (1) is hyperchaotic for the 
parameter values ( , , , ) (30,15,3, 2),a b c d  since there are two positive Lyapunov exponents in (3). 

Since the sum of the Lyapunov exponents in (3) is negative, we also conclude that the 4-D hyperchaotic 
system (1) is dissipative. This confirms the existence of a strange hyperchaotic attractor. 
The Kaplan-Yorke dimension of the system (1) is calculated as 

 1 2 3

4

3 3.0776,
| |

KY

LE LE LE
D

LE

 
        (4) 

which gives a measure of the complexity of the new hyperchaotic system (1). 
The system (1) is invariant under the change of coordinates given by 

1 2 3 4 1 2 3 4( , , , ) ( , , , )x x x x x x x x  a       (5) 

This shows that the system (1) has rotation symmetry about the 3x  axis. As a consequence, every non-

trivial trajectory of the 4-D hyperchaotic system (1) must have a twin trajectory. 
The equilibrium points of the system (1) are found by solving the system of equations: 

2 1 2 3

2 1 3 4

3 1 2

1 2

( ) 0

   0

       0

      ( ) 0

a x x x x

bx x x x

cx x x

d x x

  
   


  
   

        (6) 

For solving the nonlinear system (6), we take the parameter values as in (2). 

From the last equation in (6), 1 2.x x    

Thus, the variable 2x can be eliminated and we obtain a nonlinear system of three equations as follows:  

1 3( 60) 0x x           (7a) 

4 1 3( 15)x x x          (7b) 
2
1 33x x          (7c) 

We have two cases to consider in solving the nonlinear system (7). 

Case (A):  1 0.x   

In this case, 2 1 0.x x    From equations (7a) and (7c), it is clear that 3 4 0.x x   

Thus, we obtain one equilibrium point of the hyperchaotic system (1) as 
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0
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0
.

0

0

E

 
 
 
 
 
 

         (8) 

Case (B): 1 0.x   

In this case, from (7a), 3 60.x    Eq. (7c) gives us 2
1 180x  and so 1 180.x    

Since 2 1,x x  it follows that 2 180.x  m  From Eq. (7c), we find that 4 603.7384.x    

Thus, the hyperchaotic system (1) has two more equilibrium points given by 

 
1

180

180

60

603.7384

E

 
 
    

  

 and 
2

180

180 .
60

603.7384

E

 
 
    
  

      (9) 

The Jacobian matrix of the hyperchaotic system (1) at any point x in  

3 2

3 1

2 1

0

1
( )

0

0 0

a a x x

x b x
J x

x x c

d d

  
   
 
 
  

        (10) 

We assume that the parameter values are as in the hyperchaotic case (2). 

The Jacobian matrix 0 0( )J J E has the eigenvalues 

 1 2 3 43,   30.0443,   0.2703,   14.7739             (11) 

This shows that the equilibrium 0E is a saddle-point and unstable. 

The Jacobian matrix 1 1( )J J E has the eigenvalues 

1 2 3,40.0254,  19.8140,   0.8943 37.8431i        

This shows that the equilibrium 1E is a saddle-focus and unstable. 

Since 2 2( )J J E has the same set of eigenvalues as 1 1( )J J E , we conclude that the equilibrium 2E

is also a saddle-focus and unstable. 

Figures 1-4 show the 2-D projections of the new hyperchaotic system (1) in  1 2, ,x x   2 3, ,x x   3 4,x x

and  1 4,x x coordinate planes, respectively.  

 

Figure 1. 2-D plot of the new hyperchaotic 

system (1) in the  1 2,x x plane for 

0 (0.1,0.1,0.1,0.1)X  and  

( , , , ) (30,15,3, 2)a b c d   

 

Figure 2. 2-D plot of the new hyperchaotic 

system (1) in the  2 3,x x plane for 

0 (0.1,0.1,0.1,0.1)X  and  

( , , , ) (30,15,3, 2)a b c d   
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Figure 3. 2-D plot of the new hyperchaotic 

system (1) in the  3 4,x x plane for 

0 (0.1,0.1,0.1,0.1)X  and  

( , , , ) (30,15,3, 2)a b c d   

 

Figure 4. 2-D plot of the new hyperchaotic 

system (1) in the  1 4,x x  plane for 

0 (0.1,0.1,0.1,0.1)X  and  

( , , , ) (30,15,3, 2)a b c d   

3.  Bifurcation Analysis for the New Hyperchaotic System 

In this section, we describe a detailed bifurcation analysis for the new hyperchaotic system (1) 
introduced in Section 2. Bifurcation analysis is an important topic for studying chaotic and hyperchaotic 
systems. In addition, multistability means the coexistence of two or more attractors with the same 
parameter set but with different initial values. Multistability can lead to very complex behaviors in a 
dynamical system. Fix 30,a  15,b    2d    and keep c  as the control parameter. When  c  is varied 

in the region of [3,13],   the coexisting bifurcation model of the state variable of 4x  and the 

corresponding Lyapunov exponents (for better clarity, only the three largest Lyapunov exponents are 
presented, and the missing ones have smaller negative values) with the initial state (0.1,0.1,0.1,0.1)  are 

plotted in Figure 5 (a) and 5(b), respectively, where the blue orbit starts from the initial state 
(0.1,0.1,0.1,0.1)  and the magenta orbit starts from the initial state ( 0.1, 0.1,0.1, 0.1).    From Figure 

5(a), we can observe several kinds of coexisting attractors with different initial conditions.  

Figure 6 exhibits the coexisting hyperchaotic attractors with 6.7c  and the coexisting hyperchaotic 
attractors with 9,c   ( ,0, , )   where the blue attractor begins with the initial state (0.1,0.1,0.1,0.1)  

and the magenta one begins with the initial state  ( 0.1, 0.1,0.1, 0.1).     Specially, it can be seen that the 

system starts from a period-1 orbit with the sign of the Lyapunov exponents (0, , , )   in the region of  

[12.25,13] and then evolves into quasi-periodic orbits with the sign of the Lyapunov exponents 

(0,0, , )  in the region of [11.4,12.25) and then goes into chaos with the sign of the Lyapunov exponents 

in the region of [6.8,11.4) and finally develops hyperchaos with the sign of the Lyapunov exponents 

( , ,0, )   in the region of [3,6.8)  with the control parameter c  reducing the region of [3,13]. The 

corresponding phase portraits are plotted in Figure 7. From the above analysis, we can conclude that the 
system indeed displays very complicated dynamics. 

 

 Figure 5. Bifurcation diagram and Lyapunov exponents of the new 
hyperchaotic system (1), where we fix 30,a   15,b   2d      
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Figure 6. For the new hyperchaotic system (1): (a) when 6.7,c  coexisting 
hyperchaotic attractors, and (b) when 9,c  coexisting chaotic attractors 

 
 Figure 7. For the new hyperchaotic system (1): (a)  when 4,c  hyperchaos, (b) when 

10,c  chaos, (c) when 12,c  quasi-period, and (d) when 13,c  period-1 orbits 

4.  Circuit Implementation of the New Hyperchaotic System 

In this section, circuit design and implementation of new hyperchaotic system (1) are presented to 
validate the chaotic behaviour of system (1). The circuit construction of system in (1) has further verified 
its complex dynamic behaviors by software MultiSIM. Phase potraits obtained using circuit design of 
system (1) is shown in Figure 5. the circuit realization equation of of new hyperchaotic system (1) is 
shown in (12): 


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
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&
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        (12) 

We choose the system parameters as in the hyperchaotic case, viz. 
  30,   15,   3,   2a b c d     
The values of four capacitors in Figure 8 are taken as C1 = C2 = C3 = C4 = 3.2 nF. R1 = R2 = 13.33 kΩ, 
R3 = R5 = 40 kΩ, R4 = 26.67 kΩ, R6 = 400 kΩ, R7 = 133.33 kΩ,  R9 = R10 = 200 kΩ, R11 = R12 = R13 = R14  

= R15 = R16 = 100 kΩ.  
The circuit simulation result by MultiSIM is illustrated in Figure 9.  
It is seen from Figure 9 that phase potraits obtained using circuit implementation matches with the results 
obtained using MATLAB simulation. 
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5.  Conclusions 

A new four-dimensional hyperchaotic system with three quadratic nonlinearities was announced in this 
paper. The dynamical properties of the new hyperchaotic system are described in terms of phase 
portraits, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, etc. Also, a detailed bifurcation 
analysis of the new hyperchaotic system was carried out with bifurcation diagram and Lyapunov 
exponents. Multistability and coexisting chaotic as well as hyperchaotic attractors are observed for 
suitable values of the system parameters. Furthermore, an electronic circuit realization of the new 
hyperchaotic system was carried out via MultiSIM to confirm the feasibility of the theoretical 
hyperchaotic model.   

 

 

 

 
Figure 8: Circuit design of the new hyperchaotic system (1) 

 
(a)                                                                    (b) 
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                                      (c)                                                                     (d) 

Figure 9: Hyperhaotic attractors of system (1) using  Multisim circuit simulation: 
(a) in x1 -  x2 plane,  (b) x2 -  x3 plane, (c) x3 -  x4 plane and (d) x1 -  x4 plane . 
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