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Abstract. A new 4-D multi-stable hyperchaotic two-scroll system with four quadratic 

nonlinearities is proposed in this paper. The dynamical properties of the new hyperchaotic 

system are described in terms of finding equilibrium points, phase portraits, Lyapunov 

exponents, Kaplan-Yorke dimension, dissipativity, etc. We discover that the new hyperchaotic 

system has no equilibrium point and hence it exhibits a hidden attractor. Furthermore, we show 

that the new hyperchaos system has multi-stability by the coexistence of hyperchaotic 

attractors for different values of initial conditions. As a control application, we use integral 

sliding mode control (ISMC) to derive new results for the hyperchaos synchronization of the 

new 4-D multi-stable hyperchaotic two-scroll system with hidden attractor.  

1.  Introduction 

Chaos theory deals with nonlinear dynamical systems exhibiting high sensitivity to small changes in 

initial conditions [1-2]. Mathematically, chaotic systems are characterized by the presence of at least 

one positive Lyapunov exponent. Chaotic systems are very useful in many applications in science and 

engineering such as weather systems [3-5], ecology [6-10], neurons [11-12], biology [13-16], cellular 

neural networks [17-18], chemical reactors [19-24], brain waves [25-26], Tokamak systems [27-28], 

oscillators [29-35], encryption [36-44], finance systems [45-46], circuits [47-50], etc. 

Hyperchaotic systems are defined as nonlinear dynamical systems having two or more positive 

Lyapunov exponents [1-2]. They exhibit more complex behaviour than chaotic dynamical systems as 

the trajectories of hyperchaotic systems can expand in two different directions corresponding to the 

two positive Lyapunov exponents. Many new hyperchaotic systems with special behaviour have been 

reported in the literature such as hyperchaotic Lorenz system [51], hyperchaotic Chen system [52], 

hyperchaotic Lü system [53], hyperchaotic Vaidyanathan systems [54-55], etc. 
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In this work, we report a new hyperchaotic two-scroll system with no equilibrium point. Thus, the 

new hyperchaos system belongs to the new class of hyperchaotic systems with hidden attractors [2]. 

We show that the new 4-D hyperchaotic system exhibits a two-scroll attractor. We analyze the 

dynamical properties of the new hyperchaotic two-scroll system with phase portraits, Lyapunov 

exponents, Kaplan-Yorke dimension, dissipativity, etc.   

Section 2 describes the dynamics of the new hyperchaotic two-wing system, its phase plots and 

Lyapunov exponents. Section 3 describes the dynamic analysis of the new hyperchaotic two-wing 

system. We show that the new hyperchaos system exhibits multi-stability and this is confirmed b with 

the coexistence of two different hyperchaotic attractors for different initial conditions. Section 4 

describes the hyperchaos synchronization of the new hyperchaos systems using sliding mode control. 

Section 5 draws the main conclusions of this research work. 

2.  A New Hyperchaotic Two-Scroll system with No Equilibrium Point 

In this work, we report a new 4-D dynamical system given by  

1 2 1 2 3 4

2

2 2 1 3 1 4

3 1 2

4 1 2

( )x a x x x x x

x bx cx x px x

x x x d

x x x

   


   


 
   

&

&

&

&

      (1) 

where 1 2 3 4( , , , )X x x x x is the state and , , , ,a b c d p are positive constants.  

In this paper, we show that the 4-D system (1) is hyperchaotic for the parameter values 

  16,  3,  8,  20,  0.1a b c d p          (2) 

Using Wolf’s algorithm [56], the Lyapunov exponents of the system (1) for the parameter set 

( , , , , ) (16,3,8,20,0.1)a b c d p  and the initial state (0) (0.2,0.2,0.2,0.2)X  were found as 

1 2 3 43.0085,  0.0642,  0,  16.0506LE LE LE LE        (3) 

Thus, the 4-D system (1) is hyperchaotic with two positive Lyapunov exponents. 

The high value of 1LE over 3 indicates the highly complex chaotic nature of the new 4-D 

hyperchaotic system (1). 

It is noted that the sum of the Lyapunov exponents in (3) is negative. 

1 2 3 4 13 0LE LE LE LE            (4) 

This shows that the system (1) is dissipative with a hyperchaotic attractor. 

The Kaplan-Yorke dimension of the system (1) is computed as 

 1 2 3

4

3 3.1914
| |

KY

LE LE LE
D

LE

 
        (5) 

Figure 1 shows the Lyapunov exponents of the 4-D dissipative hyperchaotic system (1) for the 

parameter set ( , , , , ) (16,3,8,20,0.1)a b c d p   and initial state (0) (0.2,0.2,0.2,0.2).X   

Figures 2-5 show the 2-D phase portraits of the hyperchaotic system (1) for the parameter set 

( , , , , ) (16,3,8,20,0.1)a b c d p   and initial state (0) (0.2,0.2,0.2,0.2).X    From the phase plots, 

we see that the 4-D system (1) has a hyperchaotic two-scroll attractor.  
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Figure 1. Lyapunov exponents of the 

hyperchaotic two-scroll system (1) for the 

parameter set 

( , , , , ) (16,3,8,20,0.1)a b c d p   and initial 

state (0) (0.2,0.2,0.2,0.2)X   

 
Figure 2. MATLAB plot showing the 2-D 

phase portrait of the hyperchaotic two-wing 

system (1) in the 1 2( , )x x  plane for 

( , , , , ) (16,3,8,20,0.1)a b c d p   and 

(0) (0.2,0.2,0.2,0.2)X   

 

 

 

 

 

Figure 3. MATLAB plot showing the 2-D 

phase portrait of the hyperchaotic two-wing 

system (1) in the 2 3( , )x x  plane for 

( , , , , ) (16,3,8,20,0.1)a b c d p   and 

(0) (0.2,0.2,0.2,0.2)X   

 
Figure 4. MATLAB plot showing the 2-D 

phase portrait of the hyperchaotic two-wing 

system (1) in the 3 4( , )x x  plane for 

( , , , , ) (16,3,8,20,0.1)a b c d p  and 

(0) (0.2,0.2,0.2,0.2)X   
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Figure 5. MATLAB plot showing the 2-D phase 

portrait of the hyperchaotic two-wing system (1) in the 

1 4( , )x x  plane for ( , , , , ) (16,3,8,20,0.1)a b c d p 
and (0) (0.2,0.2,0.2,0.2)X   

The equilibrium points of the new hyperchaotic system (1) are obtained by solving the system   

2 1 2 3 4( ) 0a x x x x x           (6a) 

2

2 1 3 1 4 0bx cx x px x                           (6b) 

                      1 2 0x x d                      (6c) 

          1 2 0x x                 (6d) 

From (6d), we deduce that  1 2.x x   

Substituting above in (6c), we get 
2

2 0x d   or  

   
2

2x d         (7) 

Since 0,d  the equation (7) does not admit any real solution.  

Thus, the new 4-D hyperchaotic two-scroll system does not have any equilibrium point. 

Hence, we conclude that the 4-D hyperchaotic system (1) has hidden attractor [2]. 

3.  Dynamic Analysis for the New Hyperchaotic System 

3.1 Dissipativity 

The 4-D hyperchaotic two-scroll system introduced in this work is given by the dynamics 

1 2 1 2 3 4 1 1 2 3 4

2

2 2 1 3 1 4 2 1 2 3 4

3 1 2 3 1 2 3 4

4 1 2 4 1 2 3 4

( ) ( , , , )

( , , , )

( , , , )

( , , , )

x a x x x x x f x x x x

x bx cx x px x f x x x x

x x x d f x x x x

x x x f x x x x

    


    


  
    

&

&

&

&

    (8) 

The divergence of the flow defined by the system (8) is  

31 2 4

1 2 3 4

( ),
ff f f

a b
x x x x

  
     

   
      (9) 

which is negative for the chosen parameter values (2).  
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This show that the 4-D hyperchaotic system (8) is dissipative. 

Hence, the trajectories of the 4-D system (8) evolve to lie within a bounded region of the phase 

space. 

3.2 Multi-stability 

Multistability means the coexistence of two or more attractors under different initial conditions but 

with the same parameter set. It is an interesting phenomenon and can usually be found in many 

nonlinear systems [2]. Multistability can lead to very complex behaviors in a dynamical system [2]. 

It is interesting that our system (1) can exhibit coexisting attractors when choosing different initial 

conditions. For example, when selecting  ( , , , , ) (16,3,8,20,0.1)a b c d p  and the initial conditions 

0 (0.2,0.2,0.2,0.2)X  (blue) and 0 (0.2, 0.2,0.2, 0.2)Y    (red), the 4-D hyperchaotic two-scroll 

system (1) displays coexisting hyperchaotic attractor (blue) and hyperchaotic attractor (red) as 

illustrated in Figures 6 and 7 respectively. 

 

Figure 6. Multi-stability of the hyperchaotic 

system (1): Coexisting hyperchaotic attractors 

for ( , , , , ) (16,3,8,20,0.1)a b c d p  in the 

1 2( , )x x  plane.  Blue color shows the 

hyperchaotic attractor of (1) with initial state 

0 (0.2,0.2,0.2,0.2)X   and red color shows 

the hyperchaotic attractor of (1) with the initial 

state 0 (0.2, 0.2,0.2, 0.2)Y     

 
Figure 7. Multi-stability of the hyperchaotic 

system (1): Coexisting hyperchaotic attractors 

for ( , , , , ) (16,3,8,20,0.1)a b c d p  in the 

1 3( , )x x plane.  Blue color shows the 

hyperchaotic attractor of (1) with initial state 

0 (0.2,0.2,0.2,0.2)X   and red color shows 

the hyperchaotic attractor of (1) with the initial 

state 0 (0.2, 0.2,0.2, 0.2)Y     

 

4.  Hyperchaos Synchronization of the New Hyperchaotic Two-Scroll System via Integral Sliding 

Mode Control 

This section derives new results for the hyperchaos synchronization of a pair of new hyperchaotic 

systems taken as master and slave systems using integral sliding mode control [2].   

As the master system, we consider the new hyperchaotic two-scroll system given by 

 

1 2 1 2 3 4

2

2 2 1 3 1 4

3 1 2

4 1 2

( )x a x x x x x

x bx cx x px x

x x x d

x x x

   


   


 
   

&

&

&

&

      (10) 
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where 1 2 3 4, , ,x x x x are the states and , , , ,a b c d p are system parameters. 

As the slave system, we consider the new hyperchaotic two-scroll system with controls given by 

1 2 1 2 3 4 1

2

2 2 1 3 1 4 2

3 1 2 3

4 1 2 4

( )y a y y y y y u

y by cy y py y u

y y y d u

y y y u

    


    


  
    

&

&

&

&

      (11) 

where 1 2 3 4, , ,y y y y are the states and 1 2 3 4, , ,u u u u are the sliding controls to be found. 

The synchronization error between the new hyperchaotic systems (10) and (11) is defined as 

 

1 1 1

2 2 2

3 3 3

4 4 4

e y x

e y x

e y x

e y x

 
  


 
  

        (12) 

Then we obtain the error dynamics as follows: 

 

1 2 1 4 2 3 2 3 1

2 2

2 2 4 1 3 1 3 1 1 2

3 1 2 1 2 3

4 1 2 4

( )

( ) ( )

e a e e e y y x x u

e be e c y y x x p y x u

e y y x x u

e e e u

     


      


  
    

&

&

&

&

    (13) 

Based on the sliding mode control theory, the integral sliding surface of each error variable is 

defined as follows: 

 

1 1 1 1 1 1

0 0

2 2 2 2 2 2

0 0

3 3 3 3 3 3

0 0

4 4 4 4 4 1

0 0

( ) ( )

( ) ( )

( ) ( )

( ) ( )

t t

t t

t t

t t

d
s e d e e d

dt

d
s e d e e d

dt

d
s e d e e d

dt

d
s e d e e d

dt

     

     

     

     

            
             


            
          

 

 

 

 




    (14) 

The derivative of each equation in (14) yields 

 

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

s e e

s e e

s e e

s e e









 
  


 
  

& &

& &

& &

& &

        (15) 

The Hurwitz condition is fulfilled if , ( 1, 2,3, 4)i i  are positive constants. 

Based on the exponential reaching law of sliding mode control theory, we set 
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1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

sgn( )

sgn( )

sgn( )

sgn( )

s s k s

s s k s

s s k s

s s k s









  
   


  
   

&

&

&

&

       (16) 

Comparing equations (15) and (16), we get 

1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 3 3 3 3 3 3

4 4 4 4 4 4 4

sgn( )

sgn( )

sgn( )

sgn( )

s k s e e

s k s e e

s k s e e

s k s e e

 

 

 

 

   
   

   
   

&

&

&

&

      (17) 

 

Using Eq. (13), we can rewrite Eq. (17) as follows: 

1 1 1 1 2 1 4 2 3 2 3 1 1 1

2 2

2 2 2 2 2 4 1 3 1 3 1 1 2 2 2

3 3 3 3 1 2 1 2 3 3 3

4 4 4 4 1 2 4 4 4

sgn( ) ( )

sgn( ) ( ) ( )

sgn( )

sgn( )

s k s a e e e y y x x u e

s k s be e c y y x x p y x u e

s k s y y x x u e

s k s e e u e

 

 

 

 

        

         

     
      

  (18) 

From (18), we obtain the required sliding mode control (SMC) laws are as follows: 

1 2 1 4 2 3 2 3 1 1 1 1 1 1

2 2

2 2 4 1 3 1 3 1 1 2 2 2 2 2 2

3 1 2 1 2 3 3 3 3 3 3

4 1 2 4 4 4 4 4 4

( ) sgn( )

( ) ( ) sgn( )

sgn( )

sgn( )

u a e e e y y x x e s k s

u be e c y y x x p y x e s k s

u y y x x e s k s

u e e e s k s

 

 

 

 

        


         


     
     

  (19) 

Theorem 1. The integral sliding mode control law (19) renders global hyperchaos synchronization 

for the new hyperchaotic two-scroll systems (10) and (11) for all initial conditions, where the 

constants 1 2, ,  3 4, ,  1 2, ,  3 4, ,  1 2, ,k k 3 4,k k are all positive. 

Proof. This result is established with the help of Lyapunov stability theory [1-2]. 

We take the following quadratic Lyapunov function 

    2 2 2 2

1 2 3 4 1 2 3 4

1
, , , ,

2
V s s s s s s s s         (20) 

where 1 2 3 4, , ,s s s s are defined as in Eq. (14). 

It is seen that the quadratic function V is positive definite and radially unbounded on 
4.R  

The time-derivative of (20) is calculated as 

 
4

1 1 2 2 3 3 4 4

1

i i

i

V s s s s s s s s s s


    & & & & & &       (21) 

Substituting from Eq. (16) into Eq. (21), we get 

 
4 4

2

1 1

[ sgn( ) ] | |i i i i i i i i i

i i

V s s k s s k s 
 

        &     (22) 

Since 0i  and 0ik  for 1,2,3,4,i  we deduce from Eq. (22) that V& is a negative definite 

function on 
4.R  

Thus, by Lyapunov stability theory, we conclude that ( ) 0is t  as t  for 1,2,3,4.i   

Hence, we conclude that ( ) 0ie t  as t  for 1,2,3,4.i    
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This completes the proof. � 

For numerical simulations, we take the initial conditions as in the hyperchaotic case (2), viz. 

( , , , , ) (16,3,8,20,0.1).a b c d p   

We consider the sliding constants as 

 0.2,  0.2,  22i i ik    for 1,2,3,4i       (23) 

The initial state of the master system (10) is taken as 

1 2 3 4(0) 1.2,   (0) 3.5,   (0) 2.4,   (0) 0.8x x x x        (24) 

The initial state of the slave system (11) is taken as 

1 2 3 4(0) 3.9,   (0) 1.4,   (0) 0.3,   (0) 2.2y y y y        (25) 

Figures 8-11 show the complete synchronization of the new hyperchaotic systems (10) and (11). 

Figure 12 shows the time-history of the synchronization errors 1 2 3 4, , , .e e e e  

 

 

 

Figure 8. Synchronization between the states 

1x and 1y of the hyperchaotic systems (10) and 

(11) 

 
Figure 9. Synchronization between the states 

2x and 2y of the hyperchaotic systems (10) and 

(11) 

 

 

 

 

 

Figure 10. Synchronization between the states 

3x and 3y of the hyperchaotic systems (10) 

and (11) 

 
Figure 11. Synchronization between the states 

4x and 4y of the hyperchaotic systems (10) and 

(11) 
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Figure 12. Time-history of the synchronization error 

between the hyperchaotic systems (10) and (11) 

5.  Conclusions 

We reported a new 4-D multi-stable hyperchaotic two-scroll system with four quadratic nonlinearities 

in this paper. The dynamical properties of the new hyperchaotic system were analyzed terms of 

finding equilibrium points, phase portraits, Lyapunov exponents, Kaplan-Yorke dimension, 

dissipativity, etc. We showed that the new hyperchaotic system has no equilibrium point and hence it 

exhibits a hidden attractor. We also demonstrated that the new hyperchaos two-scroll system has 

multi-stability by the coexistence of hyperchaotic attractors for different values of initial conditions. 

As a control application, we applied integral sliding mode control to derive new results for the 

hyperchaos synchronization of the new 4-D multi-stable hyperchaotic two-scroll system. 

References 

[1] Vaidyanathan S and Volos C 2017 Advances and Applications in Chaotic Systems (Berlin: 

Springer) 

[2] Pham V T, Vaidyanathan S, Volos C and Kapitaniak T 2018 Nonlinear Dynamical Systems with 

Self-Excited and Hidden Attractors (Berin: Springer) 

[3] Vaidyanathan S, Azar A T, Rajagopal K, Sambas A, Kacar S and Cavusoglu U 2018 

International Journal of Simulation and Process Modelling 13 281-296 

[4] Vaidyanathan S, Volos C K, Rajagopal K, Kyprianidis I M and Stouboulos I N 2015 Journal of 

Engineering Science and Technology Review 8 74-82  

[5] Rasappan S and Vaidyanathan S 2012 Far East Journal of Mathematical Sciences 67 265-287 

[6] Vaidyanathan S 2015 International Journal of PharmTech Research 8 622-631 

[7] Vaidyanathan S 2015 International Journal of PharmTech Research 8 974-981 

[8] Vandermeer J and Perfecto I 2017 Agroecology and Sustainable Food Systems 41 697-722 

[9] Pal N, Samanta S and Rana S 2017 International Journal of Applied and Computational 

Mathematics 3 3615-3644 

[10] Chang L and Jin Z 2018 Applied Mathematics and Computation 316 138-154  

[11] Vaidyanathan S 2015 International Journal of PharmTech Research 8 167-177 

[12] Vaidyanathan S 2015 International Journal of PharmTech Research 8 956-963 

[13] Tomita K 1982 Journal of Theoretical Biology 99 111-118 

[14] Vaidyanathan S 2015 International Journal of PharmTech Research 8 106-116  

[15] Vaidyanathan S 2015 International Journal of PharmTech Research 8 156-166 

[16] Din Q, Shabbir M S, Khan M A and Ahmad K 2019 Journal of Biological Dynamics 13 481-

501 



ICComSET 2019

Journal of Physics: Conference Series 1477 (2020) 022018

IOP Publishing

doi:10.1088/1742-6596/1477/2/022018

10

 

 

 

 

 

 

[17] Njitacke Z T and Kengne J 2018 AEU-International J. Electronics and Communications 93 

242-252 

[18] Vaidyanathan S 2015 International Journal of PharmTech Research 8 946-955 

[19] Saad M, Safieddine A and Sultan R 2018 Journal of Physical Chemistry A 122 6043-6047 

[20] Vaidyanathan S 2015 International Journal of ChemTech Research 8 159-171 

[21] Vaidyanathan S 2015 International Journal of ChemTech Research 8 740-749 

[22] Vaidyanathan S 2015 International Journal of ChemTech Research 8 146-158 

[23] Vaidyanathan S 2015 International Journal of ChemTech Research 8 669-683 

[24] Vaidyanathan S 2015 International Journal of ChemTech Research 8 209-221 

[25] Faust O, Acharya U R, Adeli H and Adeli A 2015 Seizure 26 56-64 

[26] Vaidyanathan S 2015 International Journal of PharmTech Research 8 964-973 

[27] Vaidyanathan S 2015 International Journal of ChemTech Research 8 818-827 

[28] Maggs J E, Rhodes T L and Morales G J 2015 Plasma Physics and Controlled Fusion 57 

045004 

[29] Hellen E H and Volkov E 2018 Communications in Nonlinear Science and Numerical 

Simulation 62 462-479 

[30] Vaidyanathan S  2013 Lecture Notes in Electrical Engineering 131 319-327 

[31] Vaidyanathan S 2015 International Journal of Modelling, Identification and Control 23 380-

392 

[32] Vaidyanathan S and Rajagopal K 2011 Communications in Computer and Information Science 

205 193-202 

[33] Vaidyanathan S 2012 Lecture Notes of the Institute for for Computer Sciences, Social-

Informatics and Telecommunications Engineering 85 124-133 

[34] Vaidyanathan S, Volos C and Pham V T 2015 Studies in Computational Intelligence 576 571-

590 

[35] Pham V T, Vaidyanathan S, Volos C K, Jafari S, Kuznetsov N V and Hoang T M 2016 

European Physical Journal: Special Topics 225 127-136 

[36] Xu Q, Zhang Q, Jiang T, Bao B and Chen M 2018 Circuit World 44 108-114  

[37] Vaidyanathan S, Sambas A, Mamat M and Sanjaya W S M 2017 Archives of Control Sciences 

27 541-554 

[38] Singh J P, Lochan K, Kuznetsov N V and Roy B K 2017 Nonlinear Dynamics 90 1277-1299 

[39] Wang Y, Mou Y and Zhang J 2018 Journal of Harbin Engineering University 39 584-593 

[40] Mansour S M B, Sundarapandian V and Naceur S M 2016 International Journal of Control 

Theory and Applications 9 37-54  

[41] Vaidyanathan S and Rajagopal K 2017 International Journal of Simulation and Process 

Modelling  12 165-178 

[42] Dou Y, Liu X, Fan H and Li M 2017 Optik 145 456-464 

[43] Vaidyanathan S, Sambas A, Mamat M and Sanjaya W S M 2017 International Journal of 

Modelling, Identification and Control 28 153-166 

[44] Idowu B A, Vaidyanathan S, Sambas A, Olusola O I and Onma O S 2018 Studies in Systems, 

Decision and Control 133 271-295 

[45] Tacha O I, Volos C K, Kyprianidis I M, Stouboulos I N, Vaidyanathan S and Pham V T 2016 

Applied Mathematics and Computation 276 200-217 

[46] Volos C K, Pham V T, Vaidyanathan S, Kyprianidis I M and Stouboulos I N 2015 Journal of 

Engineering Science and Technology Review 8 142-151 

[47] Daltzis P, Vaidyanathan S, Pham V T, Volos C,  Nistazakis E. and Tombras G. 2018 Circuits, 

Systems, and Signal Processing 37 613-615 

[48] Sambas A, Vaidyanathan S, Mamat M and Mada Sanjaya W S 2018 Studies in Systems, 

Decision and Control 133 365-373 

[49] Pham V T, Jafari S, Volos C, Giakoumis A, Vaidyanathan S and Kapitaniak T 2016 IEEE 

Transactions on Circuits and Systems II: Express Briefs 63 878-882 



ICComSET 2019

Journal of Physics: Conference Series 1477 (2020) 022018

IOP Publishing

doi:10.1088/1742-6596/1477/2/022018

11

 

 

 

 

 

 

[50] Sambas A, Vaidyanathan S, Zhang S, Zeng Y, Mohamed M A and Mamat M 2019 IEEE Access 

7 115454-115462 

[51] Arabyani H and Nik H S 2016 International Journal of Modelling, Identification and Control 25 

138-144 

[52] Ouannas A, Grassi G, Ziar T and Odibat Z 2017 Optik 136 513-523 

[53] Mahmoud G M, Mahmoud E E and Arafa A A 2015 Nonlinear Dynamics 80 855-869 

[54] Vaidyanathan S, Dolvis L G, Jacques K, Lien C H and Sambas A 2019 International Journal of 

Modelling, Identification and Control 32 30-45 

[55] Vaidyanathan S, Azar A T and Boulkroune A 2018 International Journal of Automation and 

Control 12 5-26 

[56] Wolf A, Swift J B, Swinney H L and Vastano J A 1985 Physica D 16 285-317 


