A New 4-D Hyperchaotic Two-Wing System with a Unique Saddle-Point Equilibrium at the Origin, its Bifurcation Analysis and Circuit Simulation

S. Vaidyanathan, - and I M Moroz, - and Aceng Sambas, - and Mujiarto, - and W. S. Mada Sanjaya, - (2020) A New 4-D Hyperchaotic Two-Wing System with a Unique Saddle-Point Equilibrium at the Origin, its Bifurcation Analysis and Circuit Simulation. Journal of Physics: Conference Series, 1477. 022016. ISSN 17426588; 17426596

[img] Text
Vaidyanathan_2020_J._Phys.__Conf._Ser._1477_022016.pdf - Published Version

Download (601kB)
[img] Text
12_JPCS1477_S. Vaidyanathan.pdf

Download (2MB)

Abstract

A new 4-D hyperchaotic two-wing system with three quadratic nonlinearities is proposed in this paper. The dynamical properties of the new hyperchaotic system are described in terms of phase portraits, Lyapunov exponents, Kaplan-Yorke dimension, symmetry, dissipativity, etc. Also, a detailed dynamical bifurcation analysis of the hyperchaotic system has been studied using bifurcation diagrams. As an engineering application, an electronic circuit realization of the new hyperchaotic two-wing system is developed in MultiSIM, which confirms the feasibility of the theoretical hyperchaotic two-wing system.

[error in script]
Item Type: Article
Divisions: Fakultas Teknik > Karya Dosen
Depositing User: Tsani Karimah
Date Deposited: 31 Oct 2022 04:19
Last Modified: 26 May 2023 06:18
URI: http://repository.umtas.ac.id/id/eprint/1092

Actions (login required)

View Item View Item