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Abstract. A new 3-D chaotic jerk system with four nonlinear systems is proposed in this 

research work. There is great interest in the literature in discovering chaos in mechanical 

systems. In this work, we find chaos in a 3-D chaotic jerk system, which is a mechanical 

oscillator with four nonlinear terms. As a control application, we design backstepping based 

global chaos synchronization for a pair of new chaotic jerk systems. As a circuit application, 

we design MultiSIM electronic circuit for the new chaotic jerk system. The MultiSIM outputs 

show good agreement with the MATLAB outputs for the new jerk system.  

1.  Introduction 

Chaos theory deals with nonlinear dynamical systems exhibiting high sensitivity to small changes in 

initial conditions [1-2]. Mathematically, chaotic systems are characterized by the presence of at least 

one positive Lyapunov exponent.  

Chaotic systems have several applications in science and engineering. Some important applications 

of chaotic systems can be cited as temperature systems [3], spring-pendulum oscillator [4], motor DC 

[5], biological snap oscillator [6], radar [7], robotic [8], economic [9], circuits [10-11], etc. 

In physics, a jerk ODE can be written as the third order dynamics 

  

3 2

3 2
, ,

d x dx d x
x

dt dt dt

 

  
 

       (1) 

In (1), ( )x t stands for the displacement, 
dx

dt
the velocity, 

2

2

d x

dt
the acceleration and 

3

3

d x

dt
the jerk. 

Thus, we call the third order differential equation (1) as the jerk differential equation. 

 In mechanical engineering, jerk differential equations have several applications in oscillatory 

motion [1-2]. 

In qualitative analysis, it is convenient to express the third-order ODE (1) in a system form.  

For this purpose, we define the following phase variables: 
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Thus, the state variables in (2) can be viewed as the displacement, velocity and acceleration, 

respectively. Using these state variables, we can express the jerk differential equation (1) as follows: 
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       (3) 

Many jerk systems have been reported in the chaos literature [12-17]. Some famous jerk systems in 

the mechanical engineering are Sprott systems [12], Li system [13], Elsonbaty system [14], Coullet 

system [15], Vaidyanathan systems [16-17], etc. 

In this research paper, we report the finding of a new chaotic jerk system with four nonlinear terms. 

We describe the phase plots of the jerk system and carry out a rigorous dynamic analysis by finding 

equilibrium points, Lyapunov exponents, Kaplan-Yorke dimension, symmetry analysis, etc.  

As a control application, we derive new results for the backstepping based synchronization of the 

new chaotic jerk system with itself. Synchronization of chaotic systems deals with the control problem 

of finding suitable feedback control laws so as to asymptotically synchronize the respective 

trajectories of a pair of chaotic systems called as master and slave systems. We use backstepping 

control method for achieving global chaos synchronization of the new chaotic jerk system with itself. 

Backstepping control method is a recursive procedure used for stabilizing nonlinear dynamical 

systems [1-2]. 

Section 2 describes the new chaotic jerk system, its phase plots and Lyapunov exponents. Section 3 

describes the backstepping-based adaptive synchronization of the new chaotic jerk system with itself.  

Furthermore, an electronic circuit realization of the new chaotic system is presented in detail in 

Section 4. The circuit experimental results of the new chaotic jerk system in Section 4 agreement with 

the numerical simulations via MATLAB obtained in Section 2. Section 5 draws the main conclusions. 

2.  A New Chaotic Jerk System with Four Nonlinear Terms 

In this work, we report a new 3-D jerk system modelled by  

2 2 3| |

x y

y z

z az bx z c x xy x

 



      

&

&

&

      (4) 

where ( , , )X x y z is the state and , ,a b c are positive constants.  

In this paper, we show that the 3-D jerk system (4) is chaotic for the parameter values 

  2,  0.2,  0.5a b c          (5) 

Using Wolf’s algorithm [18], the Lyapunov exponents of the system (4) for the parameter set 

( , , ) (2,0.2,0.5)a b c  and the initial state (0) (0.2,0.2,0.2)X  were found as 

1 2 30.1979,  0,  2.7849LE LE LE         (6) 

Thus, the 3-D jerk system (4) is chaotic with a positive Lyapunov exponent, 1.LE  

It is noted that the sum of the Lyapunov exponents in (6) is negative. 

1 2 3 2.5870 0LE LE LE           (7) 

This shows that the system (4) is dissipative with a strange chaotic attractor. 

The Kaplan-Yorke dimension of the jerk system (4) is computed as 
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The equilibrium points of the new chaotic jerk system (4) are easily determined as 0 (0,0,0)E 

and 1 ( 0.7071,0,0).E    These equilibrium points are in a critical case, and Lyapunov’s first stability 

method based on linearization matrices is not successful to analyze the stability behaviour of 0E and 

1.E  From the phase plots, we infer that these equilibrium points have unstable behaviour.  

Figure 1 shows the Lyapunov exponents of the 3-D chaotic jerk system (4) for the parameter set 

( , , ) (2,0.2,0.5)a b c  and initial state (0) (0.2,0.2,0.2).X   

Figures 2-4 show the 2-D phase portraits of the hyperchaotic system (1) for the parameter set  

( , , ) (2,0.2,0.5)a b c  and initial state (0) (0.2,0.2,0.2).X     

 

Figure 1. Lyapunov exponents of the new chaotic jerk system (4) for the parameter set 

( , , ) (2,0.2,0.5)a b c   and initial state (0) (0.2,0.2,0.2)X   

 

 

 

Figure 2. MATLAB plot showing the 2-D 

phase portrait of the new chaotic jerk system 

(4) in the ( , )x y  plane for 

( , , ) (2,0.2,0.5)a b c  and 

(0) (0.2,0.2,0.2)X   

 Figure 3. MATLAB plot showing the 2-D 

phase portrait of the new chaotic jerk 

system (4) in the ( , )y z  plane for 

( , , ) (2,0.2,0.5)a b c  and 

(0) (0.2,0.2,0.2)X    
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Figure 4. MATLAB plot showing the 2-D phase 

portrait of the new chaotic jerk system (4) in the 

( , )x z  plane for ( , , ) (2,0.2,0.5)a b c  and 

(0) (0.2,0.2,0.2)X    

3.  Backstepping-Based Global Chaos Synchronization of the Chaotic Jerk Systems 

In this section, we use backstepping control method to achieve global chaos synchronization of the 

new chaotic jerk systems.    

As the master system for the synchronization, we consider the new chaotic jerk system 

 

1 1

1 1

2 2 3

1 1 1 1 1 1 1 1| |

x y

y z

z az bx z c x x y x

 



      

&

&

&

     (9) 

In (9), 1 1 1, ,x y z are the states and , ,a b c are positive, constant, parameters.  

 As the slave system for the synchronization, we consider the new chaotic jerk system  

  

2 2

2 2

2 2 3

2 2 2 2 2 2 2 2| |

x y

y z

z az bx z c x x y x u

 



       

&

&

&

     (10) 

In (10), 2 2 2, ,x y z are the states and u is a backstepping control to be designed.  

The synchronization error between the jerk systems (9) and (10) can be defined as follows: 

2 1

2 1

2 1

x

y

z

e x x

e y y

e z z

  


 
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        (11) 
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We find the error dynamics as follows: 

   

 2 2 2 2 2 3

2 2 1 1 2 1 2 2 1 1 2 1(| | | |)
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
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&

&

&

  (12) 

Using active backstepping control, we establish a key result of this section. 

Theorem 1. The master and slave chaotic jerk systems represented by (9) and (10) are globally and 

asymptotically synchronized by means of the active backstepping controller given by  

     2 2 2 2 3 3

2 2 1 1 2 1 2 2 1 1 2 1
3 5 (3 ) | | | |

x y z z
u e e a e b x z x z c x x x y x y x x K                (13)  

where 2 2z x y ze e e    and 0K  is a gain constant.    

Proof. The result is proved via backstepping control method, which is a recursive procedure in 

Lyapunov stability theory [1]. We start with the Lyapunov function 

 
2

1( ) 0.5 x xV           (14) 

where .x xe   

Differentiating 
1

V along the error dynamics (12), we get 

  2

1 x x x y x x x yV e e e e e e      & &      (15) 

We define 

  
y x ye e           (16) 

Using Eq. (16), we can simplify Eq. (15) as 

 
2

1 x x yV     &         (17) 

Next, we define the Lyapunov function 

     2 2 2

2 1
, ( ) 0.5 0.5x y x y x yV V              (18) 

Differentiating 
2

V along the error dynamics (12), we get 

  2 2

2
2 2x y y x y zV e e e       &       (19) 

We define 

 2 2z x y ze e e           (20) 

Using (20), we can express (19) as 

 
2 2

2 x y x yV       &        (21) 

Finally, we define the quadratic Lyapunov function 

 2 2 2( , , ) 0.5x y z x y zV               (22) 

It is evident that V is a positive definite function on 
3.R  

Differentiating V along the error dynamics (14) and (16), we get  

  
2 2 2

x y z zV T       &        (23) 

where 

   2 2z y z z y x y zT e e e           & & & &     (24) 

A simple calculation shows that 

   2 2 2 2 3 3

2 2 1 1 2 1 2 2 1 1 2 1
3 5 (3 ) | | | |x y zT e e a e b x z x z c x x x y x y x x u               (25) 

Substituting the value of u from Eq. (13) into Eq. (25), we obtain 

zT K          (26) 
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Substituting the value of T from Eq. (26) into Eq. (23), we get 

  
2 2 2(1 )x y zV K      &        (27) 

Thus, by Lyapunov stability theory, we conclude that  ( ( ), ( ), ( )) (0,0,0)x y zt t t     as .t    

Hence, it follows that ( ( ), ( ), ( )) (0,0,0)x y ze t e t e t  as .t   This completes the proof. � 

For numerical plots, we take the constants ( , , )a b c as in the chaotic case, viz. 2,a   0.2b  and 

0.5.c   We take the gain as 12.K   

The initial conditions of the master jerk system (9) are chosen as  

1 1 1
(0) 5.2,   (0) 1.4,   (0) 6.9x y z        (28) 

The initial conditions of the slave jerk system (10) are chosen as  

2 2 2
(0) 2.8,  (0) 7.3,  (0) 1.4x y z        (29) 

Figures 5-8 show the global chaos synchronization of the chaotic jerk systems (9) and (10).  

 

 

 

Figure 5. Complete synchronization of the states 

1
x and 

2
x of the chaotic jerk systems (9) and (10) 

 
Figure 6. Complete synchronization of the 

states 
1

y and 
2

y of the chaotic jerk systems (9) 

and (10) 

 

 

 

 

Figure 7. Complete synchronization of the 

states 
1

z and 
2

z of the chaotic jerk systems 

(9) and (10) 

 
Figure 8. Time-history of the synchronization 

errors between the chaotic jerk systems (9) and 

(10) 
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4.  Circuit Implementation of the New Chaotic Jerk System 

This section presents the MultiSIM design of an analog circuit in order to approve the theoretical 

models and confirm the applicability of the mathematical model. The schematic diagram of Figure 9 

has been simulated in MultiSIM software. The electronic circuit involves only common available 

components such as resistors, capacitors, operational amplifiers, multipliers and diodes.  

 

 

 

 
  

Figure 9 Circuit design for the new chaotic jerk system (4) 

 

By applying Kirchhoff electrical circuit laws yield the following circuit equations: 

 

1 1

2 2

2 2 3

3 3 3 4 3 5 3 6 3 7

1

1

1 1 1 1 1
| |

100 100 100

x y
C R

y z
C R

z z x z x xy x
C R C R C R C R C R











     


&

&

&

  (30) 

Here, ,x y, z are the voltages across the capacitors C1, C2, and C3, respectively.  

 

We choose the values of electronic component as: R3 = 5 kΩ, R4 = 0.5 kΩ, R5 = 20 kΩ, R6 = R7 = 0.1 

kΩ, R1 = R2 = R8 = R9 = R10 = R11 = R12 = R13 = R14 = R15 = R16 = R17 = R18 = 100 kΩ, C1 = C2 = C3 = 10 
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nF. Multisim results are reported in Figures 10-12. Clearly, the MultiSIM results show good 

agreement with the numerical simulations shown in Figures 2-4.  

 

 
 

Figure 10. MultiSIM output of the new chaotic jerk system in ( , )x y  plane 

 

 

 

 

Figure 11. MultiSIM output of the new 

chaotic jerk system in ( , )y z  plane 
 

Figure 12. MultiSIM output of the new chaotic 

jerk system in ( , )x z  plane 

5.  Conclusions 

A new 3-D chaotic jerk system with four nonlinear systems was proposed in this study. We reported 

chaos in a 3-D mechanical chaotic jerk system with four nonlinear terms. As a control application, we 

designed active backstepping based global chaos synchronization for a pair of new chaotic jerk 

systems. As a circuit application, we designed MultiSIM electronic circuit for the new chaotic jerk 

system and showed that the MultiSIM outputs are in good agreement with the MATLAB outputs for 

the new jerk 
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