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Abstract 

 

In this paper, the phenomenon of chaos that produced in the case of Sprott chaotic system with 

one hyperbolic sinusoidal nonlinearity, have been studied extensively. The basic dynamical 

properties of such system are discovered though equilibrium points, phase portrait, Lyapunov 

exponents and Poincaré map. Furthermore, An electronic circuit realization of the proposed 

system is presented in details. Finally, the circuit experimental results of the chaotic attractors 

show agreement with numerical simulations. 
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Introduction 

Chaos is used to explain the behavior of certain dynamical complex, i.e., systems whose state 

variables evolve with time, which may exhibit dynamics that are highly sensitive to initial 

conditions. Henri Poincaré was the first discoverer of chaos. In 1890, while studying the three-

body problem, he found that there existed some orbits which are non-periodic [1-2]. Interest in 

nonlinear dynamics and in particular chaotic dynamics has grown rapidly since 1963, Edward 

Lorenz, the MIT meteorologist, he was designing a 3-D model for weather prediction [3]. 

In the literature, Sprott (1994) was the first to introduce a simple flow with no equilibrium 

points [4], In 2000, Malasoma proposed the simplest dissipative jerk equation that is parity 

invariant [5], Sun and Sprott (2009) constructed a piecewise exponential jerk system [6], In 

2010, Sprott gives a 3-D jerk chaotic system having six terms on the R.H.S. with one 

hyperbolic tangential nonlinearity [7], In 2014, Chunbiao Li and Sprott constructed the chaotic 

flows with a single nonquadratic term [8] and in 2015, Vaidyanathan created a six-term novel 

Jerk chaotic system with two exponential nonlinearities [9].   

Chaos has been widely applied to many scientific disciplines, such as ecology [10], biology 

[11], economy [12], random bit generators [13], psychology [14], laser [15], astronomy [16], 

chemical reaction [17], robotics [18], Text encryption [19], image encryption [20], voice 

encryption [21], secure communication systems [22-27] etc. 

Motivated by the above researches, a Sprott chaotic system with one hyperbolic sinusoidal 

nonlinearity is proposed in this work, In Section 2, we present Sprott system from three first-

order autonomous ODEs, numerical results in evolving phase portraits, Lyapunov exponent’s 

analysis and Poincaré map analysis. In section 3, basic dynamical properties of the Sprott 

chaotic system are discussed including equlibria and Jacobian matrices. In Section 4 we 



present an electronic circuit that implements the nonlinear system and Finally, Section 5 

contains the conclusion remarks. 

 

The Sprott Chaotic System with One Hyperbolic Sinusoidal   Nonlinearity 

The dynamics of the Sprott chaotic system with one hyperbolic sinusoidal nonlinearity [28] is 

described by: 

                                               xxxxx sinh5.06.0                                             (1) 

In system form, the differential equation (1) can be expressed as: 
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Where x, y, z are state variables and when a = 0.5 and b=0.51, the Sprott chaotic system 

with one hyperbolic sinusoidal nonlinearity (2) exhibits strange attractor, we have chosen the 

initial conditions for the Sprott system (2) as 

1,0,0 000  zyx                                                         (3) 

For numerical simulation of chaotic system defined by a set of differential equation such as 

the Sprott chaotic system with one hyperbolic sinusoidal nonlinearity (2), different integration 

techniques can be used. In the MATLAB 2010, ODE45 solver yielding a fourth-order Runge-

Kutta integration solution has been used. Figures 1(a)-(c) show the projections of the phase 

space orbit on to the x–y plane, the x–z plane and the y–z plane, respectively. As it is shown, 

for the chosen set of parameters and initial conditions, the Sprott chaotic system with one 

hyperbolic sinusoidal nonlinearity (2) presents chaotic attractors of Jerk attractor type. 

 



The dynamics of the Sprott chaotic system with one hyperbolic sinusoidal nonlinearity can 

be characterized with its Lyapunov exponents which are computed numerically by Wolf 

algorithm proposed in Ref. [29]. Figure 2 shows the Lyapunov exponents of the Sprott system 

for constant parameter a = 0.5 and b=0.51. The Sprott chaotic system is chaotic with a positive 

Lyapunov exponents. In addition, the Poincare map of the system in Figure 3 also reflects 

properties of chaos. 
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Figure 1 Numerical simulation results using MATLAB 2010, for a = 0.5 and b = 0.51,  

in (a) x-y plane, (b) x-z plane, (c) y-z plane. 
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Figure 2 The dynamics of Lyapunov exponents of Sprott chaotic system  

for a = 0.5 and b = 0.51, using MATLAB 2010   

 
 

Figure 3 Poincare map in the x-y-z space plane when a = 0.5  

and b = 0.51, using MATLAB 2010. 
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Basic Properties of the Sprott Chaotic System with One Hyperbolic Sinusoidal   

Nonlinearity 

The equilibrium points of (2) denote by E ( zyx ,, ), are the zeros of its non-linear algebraic 

system which can be written as: 

   















bzyxax

z

y

)sinh(0

0

0

               (4) 

The Sprott chaotic system with one hyperbolic sinusoidal nonlinearity has one equilibrium 

point E0 (0, 0, 0). The dynamical behavior of equilibrium point can be studied by computing 

the eigenvalue of the Jacobian matrix J of system (2) where:  
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For equilibrium points E0 (0, 0, 0), the Jacobian becomes: 
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The eigenvalues are obtained by solving the characteristic equation,  1det J 0    which is: 

      5.051.0 23                                              (7) 

Yielding eigenvalues of λ1 = 0.3753,  λ2, λ3 = -0.4426± 1.0659 i, where λ1 is a positive real 

number and λ2, λ3 are a pair of complex conjugate eigenvalues with negative real parts, which 

indicates that these two imaginary equilibrium points are saddle points. This equilibrium point 

is unstable. 

 



 

Circuit Realization of the the Sprott Chaotic System with One Hyperbolic Sinusoidal 

Nonlinearity 

In this section, we design an electronic circuit modeling of the Sprott chaotic system with one 

hyperbolic sinusoidal nonlinearity. The circuit in Figure 4 has been designed following an 

approach based on operational amplifiers [30-34] where the state variables x, y, z of the system 

(2) are associated with the voltages across the capacitors C1, C2 and C3, respectively. The 

nonlinear term of system (2) are implemented with the analog multiplier. By applying 

Kirchhoff’s laws to the designed electronic circuit, its nonlinear equations are derived in the 

following form: 
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We choose R1 = R2 = R3 = R5 = R7 = R8 = R9 = R10 = R11= R12 = R13 = 10 kΩ, R4 = 200Ω, R6 = 

19.61 kΩ, R14 = 120 kΩ, R15 = 60 kΩ, R16 = 1 MΩ, C1 = C2 = C3= 10 nF. The circuit has three 

integrators by using Op-amp TL082CD in a feedback loop and two multipliers IC AD633. The 

supplies of all active devices are ±15 Volt. With MultiSIM 10.0, we obtain the experimental 

observations of system (2) as shown in Figure 5. As compared with Figure 1 a good qualitative 

agreement between the numerical simulation and the MultiSIM 10.0 results of the Sprott 

chaotic system is confirmed. 

 
 
 

 
 



 
 
 

Figure 4 Schematic of the proposed Sprott chaotic system with one hyperbolic  

sinusoidal nonlinearity by using MultiSIM 10.0. 
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(c) 

Figure 5 Various projections of the chaotic attractor using MultiSIM in 

x-y plane, (b) x-z plane and (c) y-z plane 



 

 

Conclusion 

 

A Sprott chaotic system with one hyperbolic sinusoidal nonlinearity is constructed and 

analyzed. The fundamental properties of the system such as equilibrium points, Lyapunov 

exponents and Poincaré map as well as its phase portraits were described in detail. Moreover, 

it is implemented via a designed circuit with MultiSIM and numerical simulation using 

MATLAB, showing very good agreement with the simulation result. Hence, we can apply this 

Sprott chaotic system with one hyperbolic sinusoidal nonlinearity in practical applications like 

robotic, random bits Generator and secure communications 
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Abstract 

In this paper, the phenomenon of chaos that produced in the case of 
Sprott chaotic system with one hyperbolic sinusoidal nonlinearity, 
have been studied extensively. The basic dynamical properties of such 
system are discovered though equilibrium points, phase portrait, 
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Finally, the circuit experimental results of the chaotic attractors show 
agreement with numerical simulations. 

Introduction 

Chaos is used to explain the behavior of certain dynamical complex, i.e., 
systems whose state variables evolve with time, which may exhibit dynamics 
that are highly sensitive to initial conditions. Henri Poincaré was the first 
discoverer of chaos. In 1890, while studying the three-body problem, he 
found that there existed some orbits which are non-periodic [1-2]. Interest in 
nonlinear dynamics and in particular chaotic dynamics has grown rapidly 
since 1963, Edward Lorenz, the MIT meteorologist, he was designing a 3-D 
model for weather prediction [3]. 

In the literature, Sprott [4] was the first to introduce a simple flow with 
no equilibrium points. In [5], Malasoma proposed the simplest dissipative 
jerk equation that is parity invariant, Sun and Sprott [6] constructed a 
piecewise exponential jerk system. In [7], Sprott gives a 3-D jerk chaotic 
system having six terms on the R.H.S. with one hyperbolic tangential 
nonlinearity. In [8], Chunbiao Li and Sprott constructed the chaotic flows 
with a single nonquadratic term and in [9], Vaidyanathan created a six-term 
novel Jerk chaotic system with two exponential nonlinearities.  

Chaos has been widely applied to many scientific disciplines, such as 
ecology [10], biology [11], economy [12], random bit generators [13], 
psychology [14], laser [15], astronomy [16], chemical reaction [17], robotics 
[18], Text encryption [19], image encryption [20], voice encryption [21], 
secure communication systems [22-27] etc. 

Motivated by the above researches, a Sprott chaotic system with one 
hyperbolic sinusoidal nonlinearityis proposed in this work, In Section 2, we 
present Sprott system from three first-order autonomous ODEs, numerical 
results in evolving phase portraits, Lyapunov exponent’s analysis and 
Poincarémap analysis. In Section 3, basic dynamical properties of the Sprott 
chaotic system are discussed including equilibria and Jacobian matrices. In 
Section 4 we present an electronic circuit that implements the nonlinear 
system and Finally, Section 5 contains the conclusion remarks. 
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The Sprott Chaotic System with One Hyperbolic  
Sinusoidal Nonlinearity 

The dynamics of the Sprott chaotic system with one hyperbolic 
sinusoidal nonlinearity [28] is described by: 

.sinh5.06.0 xxxxx −=++  (1) 

In system form, the differential equation (1) can be expressed as: 

( )
,
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⎪
⎬
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−−−=
=
=

bzyxaxz
zy
yx

 (2) 

where x, y, z are state variables and when 5.0=a  and ,51.0=b  the Sprott 
chaotic system with one hyperbolic sinusoidal nonlinearity (2) exhibits 
strange attractor, we have chosen the initial conditions for the Sprott system 
(2) as 

.1,0,0 000 === zyx  (3) 

For numerical simulation of chaotic system defined by a set of 
differential equation such as the Sprott chaotic system with one hyperbolic 
sinusoidal nonlinearity (2), different integration techniques can be used. In 
the MATLAB 2010, ODE45 solver yielding a fourth-order Runge-Kutta 
integration solution has been used. Figures 1(a)-(c) show the projections of 
the phase space orbit on to the yx −  plane, the zx −  plane and the zy −  
plane, respectively. As it is shown, for the chosen set of parameters and 
initial conditions, the Sprott chaotic system with one hyperbolic sinusoidal 
nonlinearity (2) presents chaotic attractors of Jerk attractor type. 

The dynamics of the Sprott chaotic system with one hyperbolic 
sinusoidal nonlinearity can be characterized with its Lyapunov exponents 
which are computed numerically by Wolf algorithm proposed in [29]. Figure 
2 shows the Lyapunov exponents of the Sprott system for constant parameter 

5.0=a  and .51.0=b  The Sprott chaotic system is chaotic with a positive 
Lyapunovexponents. In addition, the Poincare map of the system in Figure 3 
also reflects properties of chaos. 

Aceng_Sambas
Highlight

Aceng_Sambas
Note
Lyapunovexponents replaced by Lyapunov exponents
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(c) 

Figure 1. Numerical simulation results using MATLAB 2010, for 5.0=a  
and ,51.0=b  in (a) yx −  plane, (b) zx −  plane, (c) zy −  plane. 
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Figure 2. The dynamics of Lyapunov exponents of Sprott chaotic system for 
5.0=a  and ,51.0=b  using MATLAB 2010. 
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Figure 3. Poincare map in the zyx −−  space plane when 5.0=a  and 

,51.0=b  using MATLAB 2010. 

Basic Properties of the Sprott Chaotic System with  
One Hyperbolic Sinusoidal Nonlinearity 

The equilibrium points of (2) denote by ( ),,, zyxE  are the zeros of its 

non-linear algebraic system which can be written as: 

( )
.

sinh0
0
0

⎪⎭

⎪
⎬
⎫

−−−=
=
=

bzyxax
z
y

 (4) 

The Sprott chaotic system with one hyperbolic sinusoidal nonlinearity 
has one equilibrium point ( ).0,0,00E  The dynamical behavior of 

equilibrium point can be studied by computing the eigenvalue of the 
Jacobian matrix J of system (2), where: 

( )
( )

.
51.01cosh5.01

100
010

,,
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
=

x
zyxJ  (5) 



Numerical Simulation and Circuit Implementation … 7 

For equilibrium points ( ),0,0,00E  the Jacobian becomes: 

( ) .
51.015.0

100
010

0,0,0
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
=J  (6) 

The eigenvalues are obtained by solving the characteristic equation, 
[ ] 0det 1 =−λ JI  which is: 

.5.051.0 23 −λ+λ+λ  (7) 

Yielding eigenvalues of ,0659.14426.0,3753.0 321 i±−=λλ=λ  where 

1λ  is a positive real number and 32, λλ  are a pair of complex conjugate 

eigenvalues with negative real parts, which indicates that these two 
imaginary equilibrium points are saddle points. This equilibrium point is 
unstable. 

Circuit Realization of the Sprott Chaotic System with  
One Hyperbolic Sinusoidal Nonlinearity 

In this section, we design an electronic circuit modeling of the Sprott 
chaotic system with one hyperbolic sinusoidal nonlinearity. The circuit in 
Figure 4 has been designed following an approach based on operational 
amplifiers [30-34], where the state variables x, y, z of the system (2) are 
associated with the voltages across the capacitors 21, CC  and ,3C  

respectively. The nonlinear term of system (2) are implemented with the 
analog multiplier. By applying Kirchhoff’s laws to the designed electronic 
circuit, its nonlinear equations are derived in the following form: 

( )

.

11sinh11

1

1

63534333

22

11

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

−−−=

=

=

zRCyRCxRCxRCz

zRCy

yRCx

 (8) 
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We choose ========== 1311109875321 RRRRRRRRRR  

,1,60,120,61.19,200,10 16151464 Ω=Ω=Ω=Ω=Ω=Ω MRkRkRkRRk  

.10321 nFCCC ===  The circuit has three integrators by using Op-amp 

TL082CD in a feedback loop and two multipliers IC AD633. The supplies of 
all active devices are ±15 Volt. With MultiSIM 10.0, we obtain the 
experimental observations of system (2) as shown in Figure 5. As compared 
with Figure 1 a good qualitative agreement between the numerical simulation 
and the MultiSIM 10.0 results of the Sprott chaotic system is confirmed. 

The hyperbolic sinusoidal function as Taylor series [35-36]:  

( ) ( )∑
∞

=

+

+
=+++=

0

1253
.!12!5!3sinh

n

n

n
xxxxx  (9) 

The corresponding circuitale quation of each block is given as [35]: 

( ) ( ),sinhsinh 5
14
133

15
13

16
13 xxR

RxR
RxR

Rx δ≈−−−=  (10) 

where 100
1−=δ  is the scaling factor. 
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Figure 4. Schematic of the proposed Sprott chaotic system with one 
hyperbolic sinusoidal nonlinearity by using MultiSIM 10.0. 
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(a) 

 

(b) 
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(c) 

Figure 5. Various projections of the chaotic attractor using MultiSIM in 
yx −  plane, (b) zx −  plane and (c) zy −  plane. 

Conclusion 

A Sprott chaotic system with one hyperbolic sinusoidal nonlinearity is 
constructed and analyzed. The fundamental properties of the system such as 
equilibrium points, Lyapunov exponents and Poincarémap as well as its 
phase portraits were described in detail. Moreover, it is implemented via a 
designed circuit with MultiSIM and numerical simulation using MATLAB, 
showing very good agreement with the simulation result. Hence, we can 
apply this Sprott chaotic system with one hyperbolic sinusoidal nonlinearity 
in practical applications like robotic, random bits generator and secure 
communications. 
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Abstract 

 

In this paper, the phenomenon of chaos that produced in the case of Sprott chaotic system with 

one hyperbolic sinusoidal nonlinearity, have been studied extensively. The basic dynamical 

properties of such system are discovered though equilibrium points, phase portrait, Lyapunov 

exponents and Poincaré map. Furthermore, An electronic circuit realization of the proposed 

system is presented in details. Finally, the circuit experimental results of the chaotic attractors 

show agreement with numerical simulations. 

 

Keywords: Sprott chaotic system, Lyapunov exponents and Poincaré 

 



Introduction 

Chaos is used to explain the behavior of certain dynamical complex, i.e., systems whose state 

variables evolve with time, which may exhibit dynamics that are highly sensitive to initial 

conditions. Henri Poincaré was the first discoverer of chaos. In 1890, while studying the three-

body problem, he found that there existed some orbits which are non-periodic [1-2]. Interest in 

nonlinear dynamics and in particular chaotic dynamics has grown rapidly since 1963, Edward 

Lorenz, the MIT meteorologist, he was designing a 3-D model for weather prediction [3]. 

In the literature, Sprott (1994) was the first to introduce a simple flow with no equilibrium 

points [4], In 2000, Malasoma proposed the simplest dissipative jerk equation that is parity 

invariant [5], Sun and Sprott (2009) constructed a piecewise exponential jerk system [6], In 

2010, Sprott gives a 3-D jerk chaotic system having six terms on the R.H.S. with one 

hyperbolic tangential nonlinearity [7], In 2014, Chunbiao Li and Sprott constructed the chaotic 

flows with a single nonquadratic term [8] and in 2015, Vaidyanathan created a six-term novel 

Jerk chaotic system with two exponential nonlinearities [9].   

Chaos has been widely applied to many scientific disciplines, such as ecology [10], biology 

[11], economy [12], random bit generators [13], psychology [14], laser [15], astronomy [16], 

chemical reaction [17], robotics [18], Text encryption [19], image encryption [20], voice 

encryption [21], secure communication systems [22-27] etc. 

Motivated by the above researches, a Sprott chaotic system with one hyperbolic sinusoidal 

nonlinearity is proposed in this work, In Section 2, we present Sprott system from three first-

order autonomous ODEs, numerical results in evolving phase portraits, Lyapunov exponent’s 

analysis and Poincaré map analysis. In section 3, basic dynamical properties of the Sprott 

chaotic system are discussed including equlibria and Jacobian matrices. In Section 4 we 



present an electronic circuit that implements the nonlinear system and Finally, Section 5 

contains the conclusion remarks. 

 

The Sprott Chaotic System with One Hyperbolic Sinusoidal   Nonlinearity 

The dynamics of the Sprott chaotic system with one hyperbolic sinusoidal nonlinearity [28] is 

described by: 

                                               xxxxx sinh5.06.0 −=++                                            (1) 

In system form, the differential equation (1) can be expressed as: 

                                               


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−−−=

=

=

bzyxaxz

zy

yx

)sinh(


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                                                 (2) 

Where x, y, z are state variables and when a = 0.5 and b=0.51, the Sprott chaotic system 

with one hyperbolic sinusoidal nonlinearity (2) exhibits strange attractor, we have chosen the 

initial conditions for the Sprott system (2) as 

1,0,0 000 === zyx                                                         (3) 

For numerical simulation of chaotic system defined by a set of differential equation such as 

the Sprott chaotic system with one hyperbolic sinusoidal nonlinearity (2), different integration 

techniques can be used. In the MATLAB 2010, ODE45 solver yielding a fourth-order Runge-

Kutta integration solution has been used. Figures 1(a)-(c) show the projections of the phase 

space orbit on to the x–y plane, the x–z plane and the y–z plane, respectively. As it is shown, 

for the chosen set of parameters and initial conditions, the Sprott chaotic system with one 

hyperbolic sinusoidal nonlinearity (2) presents chaotic attractors of Jerk attractor type. 

 



The dynamics of the Sprott chaotic system with one hyperbolic sinusoidal nonlinearity can 

be characterized with its Lyapunov exponents which are computed numerically by Wolf 

algorithm proposed in Ref. [29]. Figure 2 shows the Lyapunov exponents of the Sprott system 

for constant parameter a = 0.5 and b=0.51. The Sprott chaotic system is chaotic with a positive 

Lyapunov exponents. In addition, the Poincare map of the system in Figure 3 also reflects 

properties of chaos. 
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Figure 1 Numerical simulation results using MATLAB 2010, for a = 0.5 and b = 0.51,  

in (a) x-y plane, (b) x-z plane, (c) y-z plane. 
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Figure 2 The dynamics of Lyapunov exponents of Sprott chaotic system  

for a = 0.5 and b = 0.51, using MATLAB 2010   

 
 

Figure 3 Poincare map in the x-y-z space plane when a = 0.5  

and b = 0.51, using MATLAB 2010. 
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Basic Properties of the Sprott Chaotic System with One Hyperbolic Sinusoidal   

Nonlinearity 

The equilibrium points of (2) denote by E ( zyx ,, ), are the zeros of its non-linear algebraic 

system which can be written as: 
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)sinh(0
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The Sprott chaotic system with one hyperbolic sinusoidal nonlinearity has one equilibrium 

point E0 (0, 0, 0). The dynamical behavior of equilibrium point can be studied by computing 

the eigenvalue of the Jacobian matrix J of system (2) where:  
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For equilibrium points E0 (0, 0, 0), the Jacobian becomes: 
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The eigenvalues are obtained by solving the characteristic equation,  1det J 0 − =  which is: 

      5.051.0 23 −++                                             (7) 

Yielding eigenvalues of λ1 = 0.3753,  λ2, λ3 = -0.4426± 1.0659 i, where λ1 is a positive real 

number and λ2, λ3 are a pair of complex conjugate eigenvalues with negative real parts, which 

indicates that these two imaginary equilibrium points are saddle points. This equilibrium point 

is unstable. 

 



 

Circuit Realization of the the Sprott Chaotic System with One Hyperbolic Sinusoidal 

Nonlinearity 

In this section, we design an electronic circuit modeling of the Sprott chaotic system with one 

hyperbolic sinusoidal nonlinearity. The circuit in Figure 4 has been designed following an 

approach based on operational amplifiers [30-34] where the state variables x, y, z of the system 

(2) are associated with the voltages across the capacitors C1, C2 and C3, respectively. The 

nonlinear term of system (2) are implemented with the analog multiplier. By applying 

Kirchhoff’s laws to the designed electronic circuit, its nonlinear equations are derived in the 

following form: 
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We choose R1 = R2 = R3 = R5 = R7 = R8 = R9 = R10 = R11= R12 = R13 = 10 kΩ, R4 = 200Ω, R6 = 

19.61 kΩ, R14 = 120 kΩ, R15 = 60 kΩ, R16 = 1 MΩ, C1 = C2 = C3= 10 nF. The circuit has three 

integrators by using Op-amp TL082CD in a feedback loop and two multipliers IC AD633. The 

supplies of all active devices are ±15 Volt. With MultiSIM 10.0, we obtain the experimental 

observations of system (2) as shown in Figure 5. As compared with Figure 1 a good qualitative 

agreement between the numerical simulation and the MultiSIM 10.0 results of the Sprott 

chaotic system is confirmed. 

 

 

 



The hyperbolic sinusoidal function as Taylor series [35-36]:  
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The corresponding circuital equation of each block is given as [35]: 
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where 
100

1
−= is the scaling factor. 

 
 
 

Figure 4 Schematic of the proposed Sprott chaotic system with one hyperbolic  

sinusoidal nonlinearity by using MultiSIM 10.0. 
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Figure 5 Various projections of the chaotic attractor using MultiSIM in 

x-y plane, (b) x-z plane and (c) y-z plane 

 

 

Conclusion 

 

A Sprott chaotic system with one hyperbolic sinusoidal nonlinearity is constructed and 

analyzed. The fundamental properties of the system such as equilibrium points, Lyapunov 

exponents and Poincaré map as well as its phase portraits were described in detail. Moreover, 

it is implemented via a designed circuit with MultiSIM and numerical simulation using 

MATLAB, showing very good agreement with the simulation result. Hence, we can apply this 

Sprott chaotic system with one hyperbolic sinusoidal nonlinearity in practical applications like 

robotic, random bits Generator and secure communications 
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Abstract 

In this paper, the phenomenon of chaos that produced in the case           
of Sprott chaotic system with one hyperbolic sinusoidal nonlinearity 
has been studied extensively. The basic dynamical properties of         
such system are discovered though equilibrium points, phase portrait, 
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Lyapunov exponents and Poincaré map. Furthermore, an electronic 
circuit realization of the proposed system is presented in details. 
Finally, the circuit experimental results of the chaotic attractors show 
agreement with numerical simulations. 

1. Introduction 

Chaos is used to explain the behavior of certain dynamical complex, i.e., 
systems whose state variables evolve with time, which may exhibit dynamics 
that are highly sensitive to initial conditions. Henri Poincaré was the first 
discoverer of chaos. In 1890, while studying the three-body problem, he 
found that there existed some orbits which are non-periodic [1-2]. Interest in 
nonlinear dynamics and in particular chaotic dynamics has grown rapidly 
since 1963, Edward Lorenz, the MIT meteorologist, he was designing a 3-D 
model for weather prediction [3]. 

In the literature, Sprott [4] was the first to introduce a simple flow with 
no equilibrium points. In [5], Malasoma proposed the simplest dissipative 
jerk equation that is parity invariant, Sun and Sprott [6] constructed a 
piecewise exponential jerk system. In [7], Sprott gave a 3-D jerk chaotic 
system having six terms on the R.H.S. with one hyperbolic tangential 
nonlinearity. In [8], Li and Sprott constructed the chaotic flows with a single 
nonquadratic term and in [9], Vaidyanathan et al. created a six-term novel 
jerk chaotic system with two exponential nonlinearities. 

Chaos has been widely applied to many scientific disciplines, such           
as ecology [10], biology [11], economy [12], random bit generators [13], 
psychology [14], laser [15], astronomy [16], chemical reaction [17], robotics 
[18], text encryption [19], image encryption [20], voice encryption [21], 
secure communication systems [22-27] etc. 

Motivated by the above researches, a Sprott chaotic system with one 
hyperbolic sinusoidal nonlinearity is proposed in this work. In Section 2, we 
present Sprott system from three first-order autonomous ODEs, numerical 
results in evolving phase portraits, Lyapunov exponent’s analysis and 
Poincaré map analysis. In Section 3, basic dynamical properties of the Sprott 
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chaotic system are discussed including equilibria and Jacobian matrices. In 
Section 4 we present an electronic circuit that implements the nonlinear 
system and Finally, Section 5 contains the conclusion remarks. 

2. The Sprott Chaotic System with One Hyperbolic  
Sinusoidal Nonlinearity 

The dynamics of the Sprott chaotic system with one hyperbolic 
sinusoidal nonlinearity [28] is described by: 

.sinh5.06.0 xxxxx −=++  (1) 

In system form, the differential equation (1) can be expressed as: 

( )
,

sinh ⎪⎭

⎪
⎬
⎫

−−−=
=
=

bzyxaxz
zy
yx

 (2) 

where x, y, z are state variables and when 5.0=a  and ,51.0=b  the Sprott 
chaotic system with one hyperbolic sinusoidal nonlinearity (2) exhibits 
strange attractor, we have chosen the initial conditions for the Sprott system 
(2) as 

.1,0,0 000 === zyx  (3) 

For numerical simulation of chaotic system defined by a set of 
differential equation such as the Sprott chaotic system with one hyperbolic 
sinusoidal nonlinearity (2), different integration techniques can be used. In 
the MATLAB 2010, ODE45 solver yielding a fourth-order Runge-Kutta 
integration solution has been used. Figures 1(a)-(c) show the projections of 
the phase space orbit on to the yx −  plane, the zx −  plane and the zy −  

plane, respectively. As it is shown, for the chosen set of parameters and 
initial conditions, the Sprott chaotic system with one hyperbolic sinusoidal 
nonlinearity (2) presents chaotic attractors of jerk attractor type. 

The dynamics of the Sprott chaotic system with one hyperbolic 
sinusoidal nonlinearity can be characterized with its Lyapunov exponents 
which are computed numerically by Wolf algorithm proposed in [29]. Figure 
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2 shows the Lyapunov exponents of the Sprott system for constant parameter 
5.0=a  and .51.0=b  The Sprott chaotic system is chaotic with positive 

Lyapunov exponents. In addition, the Poincaré map of the system in Figure 3 
also reflects properties of chaos. 
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Figure 1. Numerical simulation results using MATLAB 2010, for 5.0=a  
and ,51.0=b  in (a) yx −  plane, (b) zx −  plane, (c) zy −  plane. 
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Figure 2. The dynamics of Lyapunov exponents of Sprott chaotic system for 
5.0=a  and ,51.0=b  using MATLAB 2010. 
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Figure 3. Poincaré map in the zyx −−  space plane when 5.0=a  and 

,51.0=b  using MATLAB 2010. 

3. Basic Properties of the Sprott Chaotic System with  
One Hyperbolic Sinusoidal Nonlinearity 

The equilibrium points of (2) denote by ( ),,, zyxE  are the zeros of its 

nonlinear algebraic system which can be written as: 

( )
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 (4) 

The Sprott chaotic system with one hyperbolic sinusoidal nonlinearity 
has one equilibrium point ( ).0,0,00E  The dynamical behavior of 

equilibrium point can be studied by computing the eigenvalue of the 
Jacobian matrix J of system (2), where: 
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For equilibrium points ( ),0,0,00E  the Jacobian becomes: 
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The eigenvalues are obtained by solving the characteristic equation, 
[ ] 0det 1 =−λ JI  which is: 

.5.051.0 23 −λ+λ+λ  (7) 

Yielding eigenvalues of ,3753.01 =λ  ,0659.14426.0, 32 i±−=λλ  where 

1λ  is a positive real number and 32, λλ  are a pair of complex conjugate 

eigenvalues with negative real parts, which indicates that these two 
imaginary equilibrium points are saddle points. This equilibrium point is 
unstable. 

4. Circuit Realization of the Sprott Chaotic System with  
One Hyperbolic Sinusoidal Nonlinearity 

In this section, we design an electronic circuit modeling of the Sprott 
chaotic system with one hyperbolic sinusoidal nonlinearity. The circuit in 
Figure 4 has been designed following an approach based on operational 
amplifiers [30-34], where the state variables x, y, z of the system (2) are 
associated with the voltages across the capacitors 21, CC  and ,3C  

respectively. The nonlinear term of system (2) are implemented with the 
analog multiplier. By applying Kirchhoff’s laws to the designed electronic 
circuit, its nonlinear equations are derived in the following form: 
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We choose 131211109875321 RRRRRRRRRRR ==========  

,k10 Ω=  ,2004 Ω=R  ,k61.196 Ω=R  ,12014 Ω= kR  ,k6015 Ω=R  =16R  

,M1 Ω  .10321 nFCCC ===  The circuit has three integrators by using Op-

amp TL082CD in a feedback loop and two multipliers IC AD633. The 
supplies of all active devices are ±15 Volt. With MultiSIM 10.0, we obtain 
the experimental observations of system (2) as shown in Figure 5. As 
compared with Figure 1 a good qualitative agreement between the numerical 
simulation and the MultiSIM 10.0 results of the Sprott chaotic system is 
confirmed. 

The hyperbolic sinusoidal function as Taylor series [35, 36]:  

( ) ( )∑
∞

=

+

+
=+++=

0

1253
.!12!5!3sinh

n

n

n
xxxxx  (9) 

The corresponding circuital equation of each block is given as [35]: 

( ) ( ),sinhsinh 5
14
133

15
13

16
13 xxR

RxR
RxR

Rx δ≈−−−=  (10) 

where 100
1−=δ  is the scaling factor. 

 
Figure 4. Schematic of the proposed Sprott chaotic system with one 
hyperbolic sinusoidal nonlinearity by using MultiSIM 10.0. 
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(a) 

 

(b) 
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(c) 

Figure 5. Various projections of the chaotic attractor using MultiSIM in 
yx −  plane, (b) zx −  plane and (c) zy −  plane. 

5. Conclusion 

A Sprott chaotic system with one hyperbolic sinusoidal nonlinearity is 
constructed and analyzed. The fundamental properties of the system such as 
equilibrium points, Lyapunov exponents and Poincaré map as well as its 
phase portraits were described in detail. Moreover, it is implemented via a 
designed circuit with MultiSIM and numerical simulation using MATLAB, 
showing very good agreement with the simulation result. Hence, we can 
apply this Sprott chaotic system with one hyperbolic sinusoidal nonlinearity 
in practical applications like robotic, random bits generator and secure 
communications. 
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